Примеров структур с координационным числом большим, чем 12, мало, поскольку получение таких соединений сопряжено с целым рядом экспериментальных сложностей, обусловленных ограниченным пространством вокруг центрального атома и возникающим между лигандами электростатическим отталкиванием. Химики пытались получить вещества с координационным числом, равным шестнадцати, годами, но сообщения об успехе в этой области касались d- и f- металлов – сообщалось о получении гидридов тория, в которых торий принимал координационные числа 15 и 16, в газовой фазе был зарегистрирован комплекс с шестнадцатью связями Co-B.
Поршке удалось получить ионное соединение, в котором большой точечно заряженный катион Cs +связан ионными связями со слабо координирующимся анионом [H 2NB 2(C 6F 5) 6] —, такое сочетание ионов позволило значительно превысить координационное число, равное 12. Для этого даже не потребовалось вводить в состав соединения атом водорода (самый маленький атом из тех, что могут образовывать соединения, атом гелия еще меньше водорода, но он тут не в счёт). Исследователи получили Cs[H 2NB 2(C 6F5) 6], перемешивая раствор исходных соединений – [Na(OCH 2CH 3) 4][H 2NB 2(C 6F 5) 6] и CsF в дихлорметане. Строение полученного соединения и рекордное значение координационного числа цезия были подтверждены с помощью метода рентгеноструктурного анализа.
Платина с отрицательным зарядом
Еще одним устоявшимся представлением о поведении веществ в соединении, оставшимся у многих после школы, было то, что металлы только отдают электроны, и поэтому на атоме металла не может находиться отрицательный заряд и металл не может принимать отрицательные степени окисления.
Что касается тезиса со степенью окисления – он опровергнут достаточно давно, и имеется немало соединений, в которых степень окисления металла отрицательна. Правда, особой заслуги металлов тут нет – сам формализм подсчета степеней окисления может давать такой результат, даже если сам металл и не будет притягивать к себе электроны. С отрицательным зарядом на металле сложнее: считалось, что все же металлы не могут быть конкурентами в борьбе за электроны и, по крайней мере, в несложных по структуре веществах отрицательный заряд на металле не может существовать. В 2016 году оказалось, что бывают случаи, когда электронам лучше с металлом, чем с неметаллом.
Исследователи из США получили в кристаллическом состоянии первую двойную интерметаллическую соль, в которой на платине локализован отрицательный заряд (Angew. Chem., Int. Ed., 2016, DOI: 10.1002/anie.201606682).
Соединение состава Cs 9Pt 4H (платинид-гидрид цезия) открыли специалисты по химии материалов Володимир Сметана (Volodymyr Smetana) и Аня-Верена Мудринг (Anya-Verena Mudring) из лаборатории Эймса при Министерстве энергетики США. Платинид-гидрид цезия является первым примером соединения, состоящего из трех элементов, в котором платина принимает степень окисления –2.
Известно достаточное количество гидридов, в состав которых входят щелочные металлы, платина и водород, однако в составе этих веществ платина имеет положительную степень окисления и несет положительный заряд. К настоящему времени примеры веществ, в которых имеются отрицательно заряженные ионы металлов, крайне редки.
Соединение Cs 9Pt 4H было выделено в виде кристаллов вишнево-красного цвета, для его получения использовали реакцию платины с металлическим цезием и гидридом цезия. Изучение платинид-гидрида цезия с помощью ЯМР-спектроскопии и квантовохимического моделирования подтвердило его строение и распределение зарядов.
* * *
Получение рекордных значений степеней окисления, координационных чисел и других параметров опять же нужно не только и не столько для «химического коллекционирования», но в первую очередь для установления природы химической связи, распределения электронной плотности. Всё это, в свою очередь, нужно для изучения поведения электронов в веществах, способов управления этими электронами и создания материалов, которые потом можно будет приспособить для чего-то полезного.
Читать дальше
Конец ознакомительного отрывка
Купить книгу