Так, одно испытанное орудие, будучи в пять раз легче обычного, обладает из-за применения активно-реактивных снарядов примерно такой же дальностью стрельбы и мощностью разрывного заряда. Вопрос о принятии на вооружение подобных боеприпасов, однако, отложен до получения новых результатов испытаний. Печать отмечает, что в дальнейшем специалисты пойдут, возможно, по пути замены твердотопливного двигателя снаряда жидкостно-реактивным. Это облегчает выключение двигателя в строго определенный момент, а следовательно, сделает более удобным изменение дальности стрельбы. Ясно, что подбор компонентов топлива для снаряда с ЖРД опять потребует участия химии.
Как видно, химической науке принадлежит важная роль в развитии боеприпасов, а значит, и стрелкового оружия, артиллерии в целом. Она позволяет решать сложные и часто необычные проблемы военного дела.
ТОПЛИВНЫЕ ЭЛЕМЕНТЫ. ЧТО ЭТО ТАКОЕ?
Инженер-подполковник И. ИСАКОВ
Интенсивное насыщение современных вооруженных сил сложной боевой техникой резко увеличило, особенно за последнее десятилетие, число потребителей электроэнергии. По свидетельству иностранных специалистов, уже сейчас войсковое электроснабжение выросло в серьезную проблему, поиски решения которой ведутся в двух основных направлениях. Первое состоит в совершенствовании энергетических устройств и агрегатов, приводимых в действие тепловыми двигателями различного типа: дизельными, карбюраторными, газотурбинными. Другое направление поисков — это попытки создать принципиально новые источники электроэнергии на основе последних достижений науки, а именно электрохимии. Посмотрим, какие же возможности этой отрасли химии обратили на себя внимание военных специалистов-энергетиков.
Расточительные посредники
Если задаться вопросом, откуда в технике берется энергия вообще, то окажется, что основной ее источник— различные виды топлива: дрова, уголь, нефть, газ. Вклад химической энергии топлива составляет при-
Мерно 97,5 процента от всей потребляемой на нашей планете энергии. А как она используется? Далеко не самым выгодным способом. Химическая энергия топлива превращается, например, в электрическую, так сказать, окольным путем, через посредников в виде энергии тепловой и механической. Вспомните: прежде чем тепловая электростанция даст ток, надо сжечь топливо и получить пар, который начнет вращать турбину, а та — электрогенератор. А такое посредничество накладно: даже наиболее совершенные тепловые электроэнергетические установки имеют коэффициент полезного действия не выше 45 процентов. Значит, больше половины энергии топлива буквально вылетает в трубу.
К главному изъяну подобных электроагрегатов добавляются еще и такие, как сложность устройства, громоздкость, недостаточная эксплуатационная надежность, шум, вибрации, тепловое излучение, сопровождающие их работу. Перечисленные недостатки органически связаны с многоступенчатым принципом получения электроэнергии. Пытаясь обойтись здесь без участия котла, цилиндра и турбины, специалисты обратились к электрохимии.
Как известно, в принципе получать электроток можно и прямо, непосредственно используя химическую энергию. Так, собственно, и происходит в обычных гальванических элементах, например в батарейках для карманного фонаря. Стоит лишь нажать кнопку, и электролампочка загорается. Устройство такого элемента несложно: две металлические пластины (их называют электродами) помещают в электролит, представляющий собой кислоту, щелочь или соль. Химические реакции, в которые вступают электролит и электроды, вызывают обмен электронами между металлом и электролитом. Если теперь соединить электроды проводом, то по нему потекут электроны — электрический ток. Так будет происходить непрерывно, пока идет химическая реакция.
Однако обычные гальванические элементы содержат ограниченное количество веществ, участвующих в реакции. Через некоторое время, когда они израсходуются, элемент прекращает давать ток. Вот почему все попытки усовершенствовать гальванические элементы, увеличить их мощность и продолжительность действия, не принесли существенного успеха.
Совершенно иные возможности открываются, если непрерывно пополнять убыль веществ, участвующих в реакции токообразования, и при этом использовать распространенные виды топлива. Такими источниками тока стали электрохимические генераторы, получившие название топливных элементов.
Читать дальше