Чтобы убедиться в том, что две настолько разные силы можно объединить, нужно убедительное доказательство. Теория электрослабого взаимодействия не безупречна. Нельзя взять и сочинить историю, а потом надеяться, что все в нее так сразу и поверят. Одно из самых солидных предсказаний электрослабой теории — соотношение масс частиц W и Z . Было предсказано, что частицы Z на 13 % тяжелее частиц W, — и это экспериментально подтвердилось, причем до смешного точно.
Слабое место состоит в том, что если мы хотим, чтобы все это имело смысл, следует допустить, что поле Хиггса действительно существует. Иначе электромагнитные и слабые поля были бы до сих пор едины. Второй вариант — эта теория совершенно ошибочна, и нам нужно начинать с нуля. Однако, чтобы сохранить коллективный рассудок, предположим на минуту, что поле Хиггса существует. В этом случае, как и в случае всех остальных полей, маленькие кусочки поля Хиггса должны наблюдаться в виде частиц. Единственная сложность заключается в том, что «частица Хиггса» электрически нейтральна (а значит, при нормальных обстоятельствах ее трудно заметить) и крайне массивна (а значит, ее трудно создать в коллайдере, а если удастся, она очень быстро распадется).
Насколько она массивна, мы не знаем, но если бы она была легкой, мы бы давно ее пронаблюдали, а если бы она была слишком массивной, то частицы W и Z имели бы другое соотношение масс. Эти два ограничения заставляют считать, что частица Хиггса должна быть в 120–200 раз тяжелее протона, и цель игры, кроме того, чтобы обнаружить частицу Хиггса как таковую, — вычислить, какова ее масса. Даже до БАК физики, работающие на коллайдере-теватроне лаборатории им. Ферми, в начале 2009 года показали, что масса частицы Хиггса не может быть в 170–180 раз больше массы протона.
Как же мы собираемся вытащить одну из этих негодниц из коллайдеров? До сих пор мы говорили о столкновениях протонных пучков, но на самом деле есть занятие поинтереснее, чем сталкивать протоны. Когда частицы разгоняются, они набирают очень много энергии. Но когда встречаются два протона, сталкиваются не сами протоны, а их податливое содержимое.
Кварки и глюоны внутри каждого протона набирают во время пути вокруг коллайдера много энергии, и именно столкновение глюона с глюоном и высвобождает большое количество энергии, из которой создаются гигантские частицы вроде частицы Хиггса.
Почти все это мы додумали — или, лучше сказать, сделали крайне схематичный набросок, основанный на том, что нам известно. Нам известно, что эти частицы никогда не были засвидетельствованы ни в одном ускорителе частиц, однако в БАК можно будет проводить эксперименты с небывало высокими энергиями. Это значит, что если в предыдущих ускорителях мы уже исследовали нижнюю часть спектра масс, то теперь сможем искать самые массивные из частиц Хиггса, предсказываемых теорией. И мы уверены, что если столкнуть два кварка с достаточно высокой энергией, в результате реакции появится частица Хиггса.
Если она существует.
VI. Как же старина БАК, такой малюсенький, уничтожит такой большой мир?
Итак, мы наконец поняли, зачем построили БАК, но мы знаем и то, что любопытному на днях прищемили нос в дверях и любопытство сгубило кошку [73] В чем вы убедились (или не убедились), прочитав главу 2.
.
Если мы откроем частицу Хиггса, будет здорово. Это определенно докажет, что мы страшно умные, но нам бы очень не хотелось перемудрить. Это не в наших интересах.
Например, если мы сумеем получить одну массивную частицу — частицу Хиггса, — столкнув два кварка, не окажется ли, что мы сумеем получить и другую, совсем другую частицу, крайне опасную? Конечно, при высокоэнергичном столкновении можно получить много всякой всячины. Общественность боится, что если две частицы столкнутся, они создадут что-то очень-очень страшное: черную дыру или некоторую экзотическую материю под лирическим названием «страпельки». Могут ли они уничтожить мир?
Ультрасупермегакошмарный сценарий № 1. Черная дыра заглатывает Землю изнутри
О черных дырах мы поговорим подробно в главе 5, а сейчас вам нужно знать лишь один важный факт: если вы уроните ключи в черную дыру, забудьте о них, поскольку их, увы, уже не вернуть. Существует точка, откуда нет возврата — так называемый горизонт событий, — и чем больше вещества падает в черную дыру, тем больше становится горизонт событий, а следовательно, и черная дыра.
Читать дальше