Слабое взаимодействие отличается от других очень сильно и доказывает это, как только может. Самое интересное его отличие заключается в том, что слабое взаимодействие переносят три частицы переносчика. В отличие от пижонских названий, которые получили другие частицы, эти называются просто — W -бозоны и Z -бозоны [70] W-бозоны бывают двух разновидностей. Так набирается три.
.
Почему же слабое взаимодействие настолько слабо, почему для того, чтобы хоть как-то проявиться, ему нужны дистанции субатомных размеров? Ответ мы уже знаем. Бозоны массивны, как гимнастические мячи, и им очень трудно перемещаться на дальние дистанции. Вероятно, вы не видите в этом ничего необычного, однако даже по самым простым теориям слабое взаимодействие, как и электромагнетизм и все прочие силы, должно иметь частицу-переносчик, лишенную массы. Почему же эти частицы совсем другие?
В физическом мире быть непохожим на других — сомнительное достоинство. Физики любят симметрию. Это настоящая любовь. Они посылают симметрии нежные записочки на лекциях и встречают ее после занятий с цветами. В целом физики понимают под симметрией вот что: можно менять параметры системы, но физика, которая стоит за ней, не меняется при этом ни капельки.
Представьте себе, что вы поехали за город поиграть в мини-гольф с племянником и племянницей и, в соответствии с традиционными гендерными представлениями, даете племяннику синий мяч, а племяннице — красный. Когда вы начинаете раунд, неважно, у кого синий мяч, а у кого красный, поскольку на игровые качества мяча цвет никак не влияет.
А теперь представьте себе, что на полпути к лунке вы отвлекли детей вкуснейшим мороженым и тайком поменяли местами синий и красный мячики. Если вы признаетесь детям, что поменяли мячики, ничего страшного не случится. Они вернутся к игре на том месте, где остановились, просто теперь племянник будет бить по красному мячу, а племянница — по синему. Конечно, подменить только один мячик и сделать так, чтобы на поле оказалось два красных, нельзя: тогда дети не будут знать, по какому мячику бить, и вы испортите им чудесный день.
Давайте обратимся к более научным материям, нежели мячики и клюшки. Дейтерий — это вариант водорода, ядро которого состоит из протона и нейтрона. Если бы вы попытались заменить один из нейтронов протоном или наоборот, у вас бы получился феномен вроде лох-несского чудовища или снежного человека: очень занятный, но несуществующий. Физики так ценят симметрию, поскольку с фундаментальной точки зрения любые два электрона — или любые две элементарные частицы одного и того же типа — в точности одинаковы, неразличимы. На микроскопическом уровне нельзя сказать « тот электрон» и « этот электрон». Мы просто отмечаем, что их два.
Так, но не совсем. У электронов есть еще одно свойство — спин, — как мы заметили, когда обсуждали в предыдущей главе ЭПР-парадокс. Спин электрона может быть направлен вверх или вниз. В чем разница? Во многих случаях разницы никакой. Например, электрон со спином, направленным вверх, имеет ту же массу и заряд, что и электрон, чей спин направлен вниз. С другой стороны, если мы пропустим электрон со спином, направленным вниз, через магнитное поле, он отразится не в том направлении, что электрон, чей спин направлен вверх. Более того, при помощи магнитного поля можно превратить электрон со спином, направленным вниз, в электрон со спином, направленным вверх, и наоборот. Тут-то в игру и вступает симметрия. Физики отмечают, что две частицы совершенно одинаковы, кроме одного относительно небольшого различия. Мы думаем о них как о двух версиях одной и той же частицы.
Разумеется, иногда эта аналогия оказывается довольно-таки натянутой. Например, при игре в мини-гольф можно всегда заменить красный мяч синим, и ничего ужасного не произойдет. На игровые качества мяча цвет, повторим, не влияет. Но что будет, если мы заменим красный мяч футбольным? С точки зрения игры в гольф такая подмена будет «плохой симметрией», поскольку один мяч влезает в лунку, а другой — нет. Однако если бы вы не играли в гольф, а хотели проверить, ровный ли у вас в гостиной пол, то мяч для гольфа и футбольный мяч послужили бы этой цели с одинаковым успехом.
Более того, у электронов есть еще одно качество — так называемая фаза, которую вообще невозможно измерить. Измерить можно только разницу в фазах между двумя электронами [71] Фаза — это что-то вроде кадровой синхронизации на старом телевизоре. Картинку все равно можно различить, даже если она чуть повернута.
.
Читать дальше