Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

Здесь есть возможность читать онлайн «Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Альпина нон-фикшн, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир по Эйнштейну. От теории относительности до теории струн: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир по Эйнштейну. От теории относительности до теории струн»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как зарождалась теория относительности? Как повлияли революционные идеи Эйнштейна на представления о пространстве и времени, на науку и технику? Каково их место и значение в сегодняшней науке? Книга дает читателю возможность проникнуть в мир Эйнштейна, разделить те особые моменты, когда ему удавалось приподнимать краешек большой завесы, постигая скрытые механизмы Вселенной. Автор шаг за шагом скрупулезно, но занимательно и доступно рассказывает об истоках и формировании идей Эйнштейна, показывает их борьбу с устоявшимися представлениями, непростой путь внедрения этих идей в головы физиков и философов и значение для нашего времени.

Мир по Эйнштейну. От теории относительности до теории струн — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир по Эйнштейну. От теории относительности до теории струн», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«Интерпретация Эверетта была принята автором [Брайсом Девиттом] из простой практической необходимости: он не знает о существовании никакой иной. По крайней мере он не знает о существовании такой, которая не накладывала бы никаких искусственных ограничений или нечеткой метафизики, оставаясь при этом в состоянии обслуживать различные потребности квантовой космологии, мезоскопической квантовой физики и зарождающейся дисциплины квантовых вычислений» {161}.

Множественный мир

В чем состоит основная идея интерпретации Эверетта? Чтобы изложить ее, напомним центральный парадокс квантовой теории в том виде, как он был описан в примерах с пороховой бочкой Эйнштейна (наполовину взорвавшейся, наполовину нетронутой) и котом Шредингера (наполовину живого, наполовину мертвого). Квантовая теория описывает систему, состоящую из кота и его окружения (коробки, в которой он находится, воздуха, которым он дышит, смертельного механизма, запускаемого радиоактивным атомом, и т. д.), посредством функции конфигурации . С каждой конфигурацией системы q связано (комплексное) число A ( q ), которое мы будем называть просто амплитудой конфигурации q . Что представляет собой конфигурация q , рассматриваемая в фиксированный момент времени t , и как она описывается? Например, можно было бы описать каждую возможную мгновенную конфигурацию кота и его окружения, указав положение в пространстве каждого из атомов {162}системы (атомов, из которых состоит кот, воздух, смертельный механизм и т. д.). Положение каждого атома определяется заданием трех его координат в пространстве (длина, ширина и высота). Обозначим число атомов в системе как N . Число N – гигантское. Напомним, что грамм вещества содержит около 600 тысяч миллиардов миллиардов (6 × 10²³) атомов. Таким образом, конфигурация всей системы определяется (гигантским) списком 3 N чисел. Обозначение q указывает на такой список {163}.

Дорогой читатель, я чувствую, что вас может напугать перспектива рассмотрения величины A , зависящей от такого гигантского числа переменных. Тем более, что, как мы уже кратко отмечали, амплитуда A не обычное «действительное» число (как 2,5 или 3,1416), а комплексное число, которое, по существу, есть стрелка на плоскости, требующая для своего описания двух действительных чисел (например, длины стрелки и ее угла по отношению к направлению на восток). Чтобы наглядно продемонстрировать значение амплитуды A , мы можем использовать описание, введенное автором в предыдущей книге {164}. Оно состоит из используемой (мысленно) техники кинематографии.

Во-первых, каждая конфигурация системы q представляется фотографическим (голографическим {165}) изображением системы в рассматриваемый момент времени. С каждым q , т. е. с каждым фотографическим изображением системы мы хотим ассоциировать определенную амплитуду A , задаваемую стрелкой на плоскости, которая имеет определенную длину и указывает в определенном направлении. С каждым направлением стрелки можно связать особый оттенок цвета на «цветовом круге»: например, мы связываем с направлением на восток (на географической карте) оранжевый цвет и затем, по мере изменения направления по часовой стрелке, изменяем цвет, проходя последовательно от оранжевого (восток) к красному (юго-восток), фиолетовому (юг), затем к индиго (юго-запад), синему (запад), сине-зеленому (северо-запад), зеленому (север) и, наконец, к желтому (северо-восток). При продолжении вращения стрелки с северо-востока на восток оттенок непрерывно изменяется от желтого к оранжевому, так что мы возвращаемся в исходное положение, разложив полный спектр оттенков по кругу. Мы уже говорили, что каждой амплитуде A соответствуют длина и направление . С длиной мы можем ассоциировать интенсивность света (низкую интенсивность, если стрелка короткая, и высокую, если стрелка длинная), а с направлением можно ассоциировать оттенок цвета (например, оранжевый). Таким образом, мы можем зафиксировать каждую комплексную амплитуду цветом , имеющим как конкретную интенсивность, так и конкретный оттенок: например, оранжевый высокой интенсивности, или красный средней интенсивности, или зеленый низкой интенсивности и т. д.

Давайте объединим эти два представления: пространственную конфигурацию системы с помощью фотографического изображения (изначально черно-белого) и амплитуду A , связанную с данной конфигурацией цвета (т. е. его интенсивностью и оттенком). Это дает нам фотографическое изображение, имеющее определенную интенсивность и определенный цветовой оттенок . Например, в данный момент живой кот со своим окружением представлен интенсивным синим изображением, а мертвый кот со своим окружением – красным изображением той же интенсивности. Теперь мы можем наложить эти два изображения с помощью кинематографической техники двойной экспозиции (рис. 12). Иначе говоря, мы печатаем в одном кадре два предыдущих изображения. Это наложенное изображение образов системы, окрашенных более или менее интенсивно, дает достаточно точное представление о математической концепции комплексной амплитуды A , зависящей от пространственной конфигурации q . Для завершения описания необходимо учесть также изменение момента времени t , в который мы рассматриваем систему. Таким образом, каждому моменту t соответствует кадр, являющийся наложенной экспозицией нескольких цветных изображений с большей или меньшей интенсивностью. Рассматривая все последовательные моменты, мы получим (непрерывную) серию (цветных и многократно наложенных) изображений, т. е. фильм в цвете с наложенными образами . Наконец, мы должны представить себе, что оттенок каждой конфигурации изменяется очень быстро, стремительно перемещаясь по цветовой окружности, как только конфигурация модифицируется, даже при бесконечно малом изменении (например, как только передвигается один из атомов конфигурации). Более того, даже в случае «статической съемки», когда конфигурация не изменяется вообще, мы должны представить себе, что ее оттенок очень быстро меняется со временем, вращаясь на высокой скорости по цветовой окружности (тогда как интенсивность цвета остается постоянной) {166}.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн»

Представляем Вашему вниманию похожие книги на «Мир по Эйнштейну. От теории относительности до теории струн» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Юрий Брайдер
Отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн»

Обсуждение, отзывы о книге «Мир по Эйнштейну. От теории относительности до теории струн» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x