Итак, эти примеры релятивистских моделей Вселенной действительно обладают тем, что могло бы стать причиной ночных кошмаров Бергсона. Однако они дают так же много пищи для размышлений о том, что же такое время и каков философский смысл открытий Эйнштейна.
Большие деформации пространства-времени: нейтронные звезды и черные дыры
Чтобы завершить обзор новых горизонтов, открытых общей теорией относительности, обсудим ситуацию, когда распределение энергии и напряжения настолько сконцентрировано, что приводит к значительным деформациям хроногеометрии пространства-времени. Такая ситуация возникает в случае нейтронных звезд и черных дыр, что представляет два возможных конечных состояния массивной звезды. Напомним, что основная часть жизни звезды уходит на медленное сжигание ее ядерного топлива. Этот процесс приводит к формированию у звезды слоистой структуры с отличными по ядерному составу слоями, окружающими ядро, которое становится все более и более плотным. Когда первоначальная масса звезды достаточно велика, этот процесс в конце концов приводит к катастрофическим последствиям: ядро, уже намного более плотное, чем обычная материя, коллапсирует под действием собственного гравитационного притяжения. В зависимости от массы, содержащейся в ядре звезды, этот коллапс может привести к формированию или нейтронной звезды, или черной дыры.
Нейтронная звезда имеет массу, приблизительно равную массе Солнца при радиусе около 10 км. Материя в такой звезде состоит в основном из нейтронов (протоны и электроны прореагировали друг с другом и, испустив нейтрино, превратились в нейтроны). Плотность массы-энергии внутри нейтронной звезды достигает 100 млн т на кубический сантиметр. Более того, напряжения в такой звезде (в форме давления нейтронного газа) становятся огромными, что также способствует значительной деформации пространства-времени. При решении уравнений Эйнштейна становится ясно, что нейтронная звезда деформирует хроногеометрию пространства-времени намного сильнее, чем Солнце.
Опишем идею относительных деформаций геометрии, вызванных Солнцем или нейтронной звездой. Напомним, что если бы геометрия была евклидова, то сумма углов треугольника равнялась бы 180°. Обычный треугольник – это фигура, полученная соединением трех точек прямыми линиями. Следуя Эйнштейну, [пространственная] геометрия {100}в области присутствия распределения напряжения-энергии более не является евклидовой. Но, несмотря на это, можно определить треугольник как фигуру, полученную соединением трех точек пространства кратчайшими линиями. Представим треугольник (лежащий в плоскости, проходящей через центр объекта), который описывает звезду (Солнце или нейтронную звезду), т. е. треугольник, касающийся сторонами поверхности звезды. Измерить искривление геометрии можно, сопоставив сумму углов такого «описанного» треугольника со значением в евклидовом «недеформированном пространстве (180°). Для Солнца сумма углов построенного таким образом треугольника больше чем 180° на величину порядка трех угловых секунд. Относительная деформация (три угловых секунды, деленные на 180°) составляет лишь четыре миллионные доли. Очень малая деформация геометрии! В то же время сумма углов треугольника, описанного вокруг нейтронной звезды, больше 180° примерно на 70°. В этом случае относительная деформация составляет порядка 40 %! Мы видим, в каком смысле нейтронная звезда создает большое искривление геометрии. Отсюда можно заключить, что если имеется подтверждение на опыте корректности описания общей теорией относительности гравитационного поля нейтронной звезды, то также имеется и подтверждение применимости теории в случае больших деформаций пространства-времени. Не вдаваясь в детали {101}, скажем лишь, что четыре различные системы двойных пульсаров позволили получить 10 независимых подтверждений применимости теории относительности в режиме сильных деформаций пространства-времени. Четыре из них заодно подтверждают реальность распространения гравитационных волн, предсказанных теорией относительности. Заметим, наконец, что некоторые из этих подтверждений имеют превосходную точность с относительной ошибкой порядка трех тысячных долей. Можно добавить, что очень большое число наблюдений в Солнечной системе (в особенности «исторический» опыт по измерению смещения орбиты Меркурия) подтвердило предсказания общей теории относительности в режиме малых деформаций хроногеометрии с точностью по меньшей мере порядка трех тысячных, а в одном случае с исключительной точностью в две стотысячные доли (2 × 10 −5).
Читать дальше
Конец ознакомительного отрывка
Купить книгу