Основной эффект от эллиптической формы орбит планет состоит по большей части не в самой эллиптичности, а в том, что Солнце находится в фокусе эллипса, а не в центре. Если быть точным, то расстояние между одним из фокусов и центром эллипса пропорционально эксцентриситету, в то время как диапазон изменения расстояний от любой точки на эллипсе до заданного фокуса пропорционален квадрату эксцентриситета, то есть маленький эксцентриситет делает эту разницу расстояний совсем небольшой. Например, для эксцентриситета 0,1 (близкого к эксцентриситету орбиты Марса) наименьшее расстояние от планеты до Солнца всего на 0,5 % меньше, чем наибольшее расстояние. С другой стороны, расстояние от Солнца до центра этой орбиты составляет 10 % среднего радиуса орбиты. (Предлагаю читателю самостоятельно проверить это утверждение автора. – Прим. науч. ред. )
J. R. Voelkel and O. Gingerich, Giovanni Antonio Magini's «Keplerian» Tables of 1614 and Their Implications for the Reception of Keplerian Astronomy in the Seventeenth Century, Journal for the History of Astronomy 32, 237 (2001).
Имеется в виду Жюль Сезар (Юлий Цезарь) Скалигер, страстный защитник Аристотеля и оппонент Коперника.
По кн.: Robert S. Westfall in The Construction of Modern Science – Mechanism and Mechanics (Cambridge University Press, Cambridge, UK, 1977). P. 10.
William H. Donahue, in Johannes Kepler – New Astronomy (Cambridge University Press, Cambridge, 1992), p. 65.
Johannes Kepler, Epitome of Copernican Astronomy and Harmonies of the World, trans. Charles Glenn Wallis (Prometheus, Amherst, N.Y., 1995), p. 180.
Дальнейший текст показывает, что под средним расстоянием планеты от Солнца Кеплер имел в виду не расстояние, усредненное по времени, по полному периоду обращения планеты, а среднее арифметическое минимального и максимального расстояний между Солнцем и планетой. Как демонстрируется в техническом замечании 18, минимальное и максимальное расстояние от Солнца до планеты равняются, соответственно, (1 – e ) a и (1 + e ) a, где e – эксцентриситет, и a – половина длинной оси эллипса (или, иначе, большая полуось). Отсюда среднее расстояние равняется просто a . Как доказывается далее в техническом замечании 18, эта же величина является средним расстоянием между Солнцем и планетой, если усреднять по расстоянию, проходимому планетой вдоль своей орбиты.
Цит. по: Owen Gingerich, Tribute to Galileo in Padua, International Symposium a cura dell' Universita di Padova, 2–6 Dec. 1992, Vol. 4 (Edizioni LINT, Trieste, 1995).
Фокусное расстояние – это длина, которая характеризует оптические свойства линзы. Для выпуклых линз это расстояние позади линзы, на котором проходящие через линзу по параллельным направлениям лучи сходятся в одной точке. Для вогнутых линз фокусное расстояние – это расстояние позади линзы, на котором лучи собрались бы в одной точке, если бы линзы не было, в предположении, что линза превращает эти лучи в параллельные. Фокусное расстояние зависит от кривизны поверхностей линзы и от соотношения скоростей света в воздухе и в стекле (см. техническое замечание 22).
Галилео Галилей. Избранные труды: в 2 т. Т. 1 / Пер. и прим. И. Н. Веселовского. – М.: Наука, 1964. С. 14.
Угловой размер планет достаточно велик, чтобы лучи с различных точек их дисков, направленные в глаз наблюдателя, проходя сквозь земную атмосферу, располагались на расстояниях, превышающих размер обычных атмосферных возмущений. Таким образом, эффекты нескольких различных возмущений на пути лучей света от отдельных точек диска планеты взаимно не коррелируют и вследствие этого чаще взаимно компенсируются, а не усиливаются. Поэтому мы не видим планеты мерцающими.
Галилео расстроился бы, если бы узнал, что именно эти названия прижились в дальнейшем и употребляются в наше время. Так спутники Юпитера назвал в 1614 г. Симон Майр, немецкий астроном, который оспаривал первенство Галилея в их открытии.
Галилео Галилей. Рассуждение о телах, пребывающих в воде// Избранные труды: в 2 т. Т. 2/Пер. и прим. И. Н. Веселовского. – М.: Наука, 1964. С. 39.
Предположительно, Галилей пользовался не часами, а ориентировался по видимому движению звезд. Поскольку звездам необходимо примерно 24 часа, чтобы совершить видимый оборот вокруг Земли на 360°, изменение положения звезды на один градус указывает на то, что прошла 1/360 часть этого времени, то есть 4 минуты.
Современный английский перевод книги: Thomas Salusbury Galileo, Discourse on Bodies in Water, intr. and comm. Stillman Drake.
Читать дальше
Конец ознакомительного отрывка
Купить книгу