Покажем теперь, как теория Дирака связана с теорией Паули. Все, касающееся спиновых свойств в теории Дирака, нужно привести к форме Паули. Иными словами, следует определить, какова вероятность того, что спин будет обладать той или иной из двух возможных величин в некотором направлении D . Чтобы ответить на этот вопрос, необходимо прежде всего выяснить, как разлагается «КСИ»-функция на четыре компоненты, если ось z направить вдоль D . Вероятность одной из величин + h /4»пи» «альфа»удет тогда выражаться суммой интенсивностей двух четных компонент (второй и четвертой), а вероятность величины – h /4»пи» – суммой интенсивностей нечетных компонент «КСИ»-функции (первой и третьей). Дальнейшее исследование решений уравнения Дирака показывает, что если скорость частицы мала по сравнению со скоростью света, то первыми двумя компонентами волновой функции можно пренебречь по сравнению с двумя последними. Иными словами, если можно пренебречь релятивистскими эффектами, то «КСИ»-функцию достаточно считать двухкомпонентной. При этом интенсивность одной компоненты определяет вероятность одного из возможных значений спина, а интенсивность второй – другого.
Таким образом, мы в точности приходим к теории Паули. Оказывается, последняя – просто нерелятивистское ньютоново приближение теории Дирака. В то же время становится понятным, почему вместо двух компонент в теории Паули «КСИ»-функция в теории Дирака имеет четыре компоненты: существование спина приводит к расщеплению «КСИ»-функции на две компоненты; релятивистские эффекты еще раз приводят к расщеплению каждой из этих двух компонент, причем это второе расщепление исчезает в ньютоновом приближении.
Между прочим заметим, что вся вероятностная интерпретация новой механики очень легко переносится в теорию Дирака ценой некоторого усложнения обозначений. Эта новая точка зрения оказывается здесь совершенно правильной. Прежде всего она позволяет понять проблему тонкой структуры и однозначно обосновать формулы Зоммерфельда, одновременно внося в них исправления.
Действительно, если с помощью уравнения Дирака снова проквантовать атом водорода, то оказывается, что благодаря появлению нового свойства – спина – возникают новые, доселе неизвестные квантовые числа. Они в точности совпадают с внутренними квантовыми числами, введенными эмпирически за несколько лет до этого при классификации спектральных термов, наблюдавшихся на опыте.
Полученная таким путем формула для тонкой структуры совпадает с формулой Зоммерфельда, в которой старые азимутальные квантовые числа заменены новыми квантовыми числами. В результате такой последовательной повсеместной замены достигается полное совпадение экспериментально наблюдаемых спектров с теоретическими. Аналогичные результаты получаются и для более тяжелых атомов, если, конечно, можно довести до конца все расчеты, введя некоторые упрощающие предположения. Таким образом, трудности, связанные с рентгеновскими дублетами, устраняются. Итак, важная идея Зоммерфельда о введении в квантовую теорию релятивистских понятий для объяснения тонкой структуры оказалась верной. Однако, чтобы получить вполне удовлетворительные результаты, понадобилось ввести также спин. Первый успех Зоммерфельда не случаен, однако в его теории отсутствовал еще один важный элемент: спин.
Теории Дирака удалось также полностью объяснить магнитные аномалии. При изучении эффекта Зеемана было обнаружено существование аномальных эффектов, которые вызвали большой интерес теоретиков того времени. Причину такого успеха легко понять. Чтобы добиться объяснения аномальных эффектов, нужно было приписать отношению магнитного момента атома к его механическому моменту значение, отличное от так называемого нормального. Это нормальное значение возникает из гипотезы, что магнитный момент атома – результат исключительно орбитального движения его электронов. Приписывая же электрону в соответствии с гипотезой Уленбека и Гоудсмита собственный магнитный момент, отношение которого к его собственному механическому моменту равно удвоенному по сравнению с нормальным значению, теории Дирака удалось выйти из рамок нормального эффекта Зеемана и предсказать аномальные эффекты. И это успех не только качественный, но и количественный. Действительно, расчеты позволяют подтвердить формулу Ланде и предсказать несколько эмпирически величину коэффициента, введенного им для описания аномальных эффектов.
Читать дальше