Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

Здесь есть возможность читать онлайн «Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Манн, Иванов и Фербер, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Почему Е=mc²? И почему это должно нас волновать: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Почему Е=mc²? И почему это должно нас волновать»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга поможет понять теорию относительности и проникнуть в смысл самого известного в мире уравнения. Своей теорией пространства и времени Эйнштейн заложил фундамент, на котором зиждется вся современная физика. Пытаясь постичь природу, физики и сегодня создают теории, которые иногда в корне меняют нашу жизнь. О том, как они это делают, рассказывается в этой книге.
Книга будет полезна всем, кто интересуется устройством мира.

Почему Е=mc²? И почему это должно нас волновать — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Почему Е=mc²? И почему это должно нас волновать», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

До настоящего момента мы всего лишь быстро прошлись по списку частиц, которые «обитают» в основном уравнении. Эти 12 частиц материи должны быть априори включены в теорию, хотя на самом деле мы даже не знаем, почему их именно столько. Благодаря наблюдениям процесса распада частиц Z на нейтрино, которые проводились в 1990-х годах в CERN, у нас действительно есть доказательства того, что таких частиц 12. С другой стороны, для создания Вселенной, по всей видимости, достаточно всего четырех частиц (таких как верхний и нижний кварки, электрон и электронное нейтрино), поэтому существование остальных восьми частиц остается загадкой. Мы считаем, что они сыграли важную роль на раннем этапе формирования Вселенной, но как именно они проявляли или проявляют свое действие в современной жизни – один из главных вопросов физики, ответ на который пока не найден.

Что касается стандартной модели, то все упомянутые в ее центральном уравнении двенадцать частиц – это элементарные частицы, которые не могут быть разделены на более мелкие части и представляют собой неделимые структурные элементы. Пожалуй, это действительно противоречит здравому смыслу: на первый взгляд было бы вполне естественным предположить, что любую маленькую частицу можно (теоретически) разделить пополам. Однако квантовая теория работает совсем не так, а наш здравый смысл и в этот раз нельзя назвать хорошим ориентиром в области фундаментальной физики. Согласно стандартной модели эти частицы не имеют субструктуры. Их называют «точечными» и считают конечным элементом материи. В свое время вполне может оказаться, что в ходе какого-либо эксперимента будет обнаружена возможность расщепления кварка на более мелкие фрагменты. Однако все дело в том, что так быть не должно: точечные частицы действительно могут оказаться неделимыми, и тогда вопросы об их субструктуре станут бессмысленными. Таким образом, мы имеем группу частиц, из которых построен наш мир, а также основное уравнение – ключ к пониманию того, как эти частицы взаимодействуют друг с другом.

Однако мы не упомянули об одном тонком моменте: хотя мы постоянно говорим о частицах, на самом деле это не совсем корректный термин. Это не частицы в общепринятом значении этого слова. Они не перемещаются в пространстве, отскакивая друг от друга, подобно миниатюрным бильярдным шарам. Вместо этого они взаимодействуют друг с другом наподобие того, как взаимодействуют волны на поверхности воды, создавая тени на дне бассейна. Эти частицы имеют волновые характеристики, оставаясь при этом частицами. Такая картина весьма парадоксальна и вытекает из квантовой теории. Точная природа волновых взаимодействий строго (то есть математически) задается основным уравнением. Но откуда мы знали, что именно необходимо включить в это уравнение, когда писали его? По каким принципам оно построено? Прежде чем заняться этими важными вопросами, давайте глубже проанализируем основное уравнение и попытаемся понять, что именно оно означает.

Первая строка уравнения описывает кинетическую энергию, которая переносится частицами W и Z , фотоном и глюоном, и говорит нам о том, как они взаимодействуют друг с другом. Мы еще не обсуждали эту возможность, но она существует: глюоны могут вступать во взаимодействие с другими глюонами, а частицы W и Z могут взаимодействовать между собой. Частица W может также взаимодействовать с фотоном. В этом перечне отсутствует возможность взаимодействия фотонов с фотонами, поскольку оно не происходит. И это большая удача, иначе нам было бы трудно что-либо увидеть. То, что вы можете читать эту книгу, – в каком-то смысле удивительный факт. Дело в том, что свет, исходящий от этой страницы, не отклоняется от пути к вашим глазам под воздействием пересекающего этот путь света от других окружающих вас объектов, которые вы могли бы увидеть, повернув голову. Фотоны буквально проскакивают мимо, не обращая внимания друг на друга.

Б о льшая часть действия происходит во второй строке основного уравнения. Эта строка демонстрирует, как каждая частица материи во Вселенной взаимодействует с остальными частицами. В ней отображены взаимодействия, посредниками в которых выступают фотоны, частицы W и Z , а также глюоны. Кроме того, во второй строке отображена кинетическая энергия всех частиц материи. Третью и четвертую строки уравнения мы не будем пока рассматривать.

Как мы уже подчеркивали, за исключением гравитации в основном уравнении отображены все известные нам фундаментальные законы физики. Это уравнение включает в себя закон электростатического отталкивания в том виде, в котором его описал в количественной форме Шарль Огюстен де Кулон [50]в конце XVIII столетия, а также все аспекты электричества и магнетизма, если уж на то пошло. Понятия, введенные Фарадеем, и прекрасные уравнения Максвелла становятся очевидными, если мы «спросим» основное уравнение, как частицы с электрическим зарядом взаимодействуют друг с другом. И конечно же, вся эта формула твердо опирается на специальную теорию относительности Эйнштейна. В действительности та часть стандартной модели, которая объясняет, как взаимодействуют свет и материя, называется квантовой электродинамикой. Слово «квантовая» напоминает нам, что квантовая теория внесла некоторые, в большинстве случаев совсем незначительные, изменения в уравнения Максвелла, повлекшие за собой едва заметные последствия, которые впервые изучал в середине XX века Ричард Фейнман и другие ученые. Как мы уже видели, основное уравнение содержит также физические основы сильных и слабых взаимодействий. Свойства этих трех сил природы описаны в уравнении во всех деталях, а это означает, что правила игры сформулированы с математической точностью, без какой бы то ни было неопределенности и избыточности. Таким образом, если оставить в стороне гравитацию, мы имеем некий приближенный вариант теории великого объединения. Справедливо также то, что ни в ходе экспериментов, ни в процессе наблюдения космического пространства никто так и не нашел никаких доказательств того, что во Вселенной действует некая пятая сила. Большинство повседневных явлений можно полностью объяснить с помощью законов электромагнетизма и гравитации. Слабое взаимодействие поддерживает горение Солнца, но в повседневной жизни на Земле оно почти не ощущается. С другой стороны, сильное взаимодействие сохраняет целостность атомных ядер, но редко распространяется за пределы ядра, а значит, эта огромная сила не проявляет своего действия в нашем макроскопическом мире. Иллюзию того, что такие твердые вещи, как столы и стулья, на самом деле твердые, поддерживает электромагнитное взаимодействие. На самом деле материя – это главным образом пустое пространство. Представьте себе, что вы увеличили атом настолько, что его ядро стало размером с горошину. В таком случае электроны были бы песчинками, с высокой скоростью вращающимися вокруг ядра на расстоянии в один километр, а все остальное – пустота. Аналогия с песчинкой – в какой-то мере преувеличение, так как мы не должны забывать, что элементарные частицы действуют скорее как волны, а не как песчинки. Но этой аналогией мы хотели показать относительный размер атома в сравнении с размером ядра, расположенного в его центре. Твердость возникает, когда мы пытаемся протолкнуть облако вращающихся вокруг ядра электронов через облако электронов соседнего атома. Поскольку электроны имеют электрический заряд, эти облака отталкиваются и не дают атомам пройти сквозь друг друга, хотя они и представляют собой в основном пустое пространство. Мысль о пустоте материи возникает, когда мы смотрим через окно. Хотя оконное стекло кажется твердым, свет без труда проходит сквозь него, позволяя нам увидеть окружающий мир. В каком-то смысле удивительно другое: почему непрозрачен брусок дерева!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Почему Е=mc²? И почему это должно нас волновать»

Представляем Вашему вниманию похожие книги на «Почему Е=mc²? И почему это должно нас волновать» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Почему Е=mc²? И почему это должно нас волновать»

Обсуждение, отзывы о книге «Почему Е=mc²? И почему это должно нас волновать» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x