Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать

Здесь есть возможность читать онлайн «Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Манн, Иванов и Фербер, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Почему Е=mc²? И почему это должно нас волновать: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Почему Е=mc²? И почему это должно нас волновать»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга поможет понять теорию относительности и проникнуть в смысл самого известного в мире уравнения. Своей теорией пространства и времени Эйнштейн заложил фундамент, на котором зиждется вся современная физика. Пытаясь постичь природу, физики и сегодня создают теории, которые иногда в корне меняют нашу жизнь. О том, как они это делают, рассказывается в этой книге.
Книга будет полезна всем, кто интересуется устройством мира.

Почему Е=mc²? И почему это должно нас волновать — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Почему Е=mc²? И почему это должно нас волновать», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как все это согласуется с нашим пониманием энергии? Каждый из двух исходных протонов имеет массу 938,3 МэВ/ с ² (1 МэВ/ с ² равен 1 миллиону эВ/ с ²; здесь М означает мега, или миллион). Перевести МэВ/ с ² в килограммы довольно просто: показатель 938,3 МэВ/ с ² соответствует массе 1,673 · 10–27 килограммов [37]. Общая масса двух исходных протонов – 1876,6 МэВ/ с ². Масса дейтрона – 1875,6 МэВ/ с ², а энергию, соответствующую остатку 1 МэВ/ с ², уносят с собой позитрон и нейтрино. Примерно половина этой энергии уходит на образование позитрона, поскольку его масса составляет около 0,5 МэВ/ с ² (нейтрино почти не имеют массы [38]). Таким образом, когда два протона превращаются в дейтрон, сравнительно небольшая доля общей массы (около 1/40 одного процента) разрушается и преобразуется в кинетическую энергию позитрона и нейтрино.

Приближение двух протонов друг к другу для образования дейтрона – один из способов высвобождения энергии, заключенной в этом сильном взаимодействии, а также пример ядерного синтеза. Термин «синтез» используется для описания любого процесса, высвобождающего энергию в результате объединения двух или более ядер. В отличие от энергии, которая выделяется в ходе химической реакции под воздействием электромагнитной силы, сильное ядерное взаимодействие генерирует огромную энергию связи. Например, сопоставьте 0,5 МэВ энергии, выделяемой в результате образования дейтрона, с 6 эВ энергии, высвобождаемой в ходе химической реакции. Здесь, на Земле, такой синтез не происходит каждый день, потому что сильное взаимодействие возможно только на коротких расстояниях. Оно проявляется, лишь когда отдельные составные части находятся очень близко друг к другу, и начинает быстро уменьшаться, когда расстояние между ними становится больше фемтометра (что примерно равно размеру одного протона). Однако приблизить протоны на такое расстояние достаточно трудно из-за действующей между ними силы электромагнитного отталкивания. Один из способов добиться этого – ускорить движение протонов, что на самом деле означает наличие очень высокой температуры, поскольку температура по своей сути – не что иное, как показатель средней скорости объектов: молекулы воды в чашке горячего чая перемещаются быстрее молекул в кружке холодного пива. Чтобы начался процесс синтеза, необходима температура минимум 10 миллионов градусов, а по возможности – гораздо больше. К счастью для нас, во Вселенной есть места, где температура достигает и даже превышает минимум, требуемый для протекания процесса ядерного синтеза. Эти места – в самом сердце звезд.

Давайте совершим путешествие в прошлое, в космические темные века, менее чем через полмиллиарда лет после Большого взрыва, когда во Вселенной был только водород, гелий и вкрапления некоторых легких химических элементов. По мере расширения и охлаждения Вселенной под воздействием гравитации первичные газы постепенно образуют сгустки, набирая скорость в процессе движения друг к другу, подобно тому как эта книга начнет с ускорением падать на пол, если вы ее уроните. Стремительное движение водорода и гелия приводит к повышению их температуры, в результате чего большие сгустки газа становятся все более горячими и плотными. При температуре 10 тысяч градусов электроны сходят со своих орбит вокруг ядер, оставляя после себя газ, состоящий из протонов и электронов и известный как плазма. Отдельные электроны и протоны продолжают неуклонно, все быстрее и быстрее, двигаться внутрь сгустка в процессе неумолимо ускоряющегося сжатия. Необратимое на первый взгляд падение плазмы останавливается при температуре 10 миллионов градусов, когда происходит нечто очень важное – то, что превращает горячий сгусток протонов и электронов в жизнь и свет Вселенной, в великолепный источник ядерной энергии, в звезду. Отдельные протоны сливаются воедино и образуют дейтрон, который, в свою очередь, может слиться с еще одним протоном и образовать гелий, выделяя при этом драгоценную энергию связи. Так новая звезда превращает небольшую часть своей исходной массы в энергию, согревающую сердцевину звезды и помогающую ей сопротивляться гравитационному сжатию на протяжении минимум нескольких миллиардов лет. Этого времени достаточно для согревания холодных каменистых планет, образования жидкой воды, эволюции животных и возникновения цивилизаций.

Наше Солнце – звезда, которая находится сейчас на комфортном этапе середины жизненного цикла: она сжигает водород, чтобы образовать гелий. При этом Солнце теряет 4 миллиона тонн массы каждую секунду каждого дня каждого тысячелетия, превращая 600 миллионов тонн водорода в гелий за одну секунду. Такое изобилие, составляющее основу нашей жизни, не может длиться вечно даже в случае нашего местного сгустка плазмы, достаточно большого, чтобы содержать в себе миллион таких планет, как Земля. Так что же происходит, когда в сердце звезды заканчивается водородное топливо? Без ядерного источника давления, направленного вовне, такая звезда снова будет сжиматься и становиться все горячее. Со временем при температуре около 100 миллионов градусов гелий начнет гореть и процесс сжатия звезды снова остановится. Мы используем слово «гореть», хотя это не совсем точное обозначение происходящего. На самом деле мы имеем в виду начало процесса ядерного синтеза, чистая масса конечных продуктов которого меньше массы исходных частиц, сливающихся воедино. В полном соответствии с формулой E = mc ² эта потеря массы приводит к выработке энергии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Почему Е=mc²? И почему это должно нас волновать»

Представляем Вашему вниманию похожие книги на «Почему Е=mc²? И почему это должно нас волновать» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Почему Е=mc²? И почему это должно нас волновать»

Обсуждение, отзывы о книге «Почему Е=mc²? И почему это должно нас волновать» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x