2. Если средняя плотность Вселенной меньше, чем необходимо для того, чтобы «закрыть» Вселенную, то она будет расширяться бесконечно. В этом случае искривление пространства приведёт к гиперболической геометрии. Гиперболическая Вселенная, как уже сказано, расширяется бесконечно. Такая Вселенная называется открытой Вселенной , или Вселенной с k = –1.
3. Наконец, если средняя плотность Вселенной такова, что Вселенная балансирует на острие ножа между открытой и закрытой, геометрия пространства соответствует плоскому евклидовому пространству, а сама Вселенная бесконечно расширяется со всё уменьшающейся скоростью, стремящейся со временем к нулю. Такая Вселенная называется плоской Вселенной , или Вселенной с k = 0.
Итак, что же нас ждёт?
Кто говорит, мир от огня
Погибнет, кто от льда.
А что касается меня,
Я за огонь стою всегда.
Но если дважды гибель ждёт
Наш мир земной, – ну что ж,
Тогда для разрушенья лёд
Хорош,
И тоже подойдёт.
Роберт Фрост, «Огонь и лёд» (перевод М. Зенкевича)
Когда я спросил трёх молодых миссионеров, какая же смерть нас ждёт: горячая или холодная, они ответили, что всё зависит от меня. Вполне вероятно, что меня ждёт горячая смерть, если я не изменю своё отношение к богу.
Физики и космологи не имеют определённого мнения в отношении вида окончательной расплаты. На протяжении десятилетий они пытались определить, какая из трёх судеб будет править бал последних дней Вселенной. Первый, наиболее очевидный способ выяснить это – направить наши телескопы во все уголки Вселенной и подсчитать полную массу всего, что можно увидеть: звёзд, галактик, гигантских пылевых облаков и прочей материи, какую только можно разглядеть непосредственно или вычислить её существование. Достаточно ли гравитационного притяжения всей этой материи, чтобы остановить расширение?
Мы знаем, с какой скоростью Вселенная расширяется сегодня. Хаббл установил, что скорости далёких галактик пропорциональны расстоянию до них, а коэффициентом пропорциональности является постоянная Хаббла. Это число является хорошей мерой скорости расширения: чем больше значение постоянной Хаббла, тем быстрее галактики удаляются друг от друга. Размерность постоянной Хаббла – скорость, делённая на расстояние. Астрономы обычно измеряют постоянную Хаббла в километрах в секунду на мегапарсек . Что такое километр в секунду, понятно любому. Один километр в секунду – это три скорости звука, или три Маха. Мегапарсеки менее известны широкой публике. Это единица расстояния, принятая в космологии. Один мегапарсек приблизительно равен трём миллионам световых лет или тридцати триллионам триллионов километров – чуть больше, чем расстояние до ближайшей к нам галактики Андромеды.
Значение постоянной Хаббла неоднократно измерялось и уточнялось за прошедшие годы и было предметом оживлённых дебатов. Астрономы соглашались с тем, что значение постоянной Хаббла лежит в диапазоне от 50 до 100 километров в секунду на мегапарсек, но только в самое последнее время её значение было более или менее точно определено в 75 (км/с)/Мпк. Смысл этого числа состоит в том, что галактики, отстоящие друг от друга на один мегапарсек, разлетаются с относительной скоростью в 75 км/с. Галактики, разделённые расстоянием в два мегапарсека, разлетаются с относительной скоростью 150 км/с.
По земным стандартам скорость в 75 км/с выглядит умопомрачительно высокой. Мне понадобилось бы всего десять минут, чтобы, двигаясь с такой скоростью, совершить кругосветное путешествие. Но с точки зрения физиков или астрономов это небольшая скорость. Например, наша Солнечная система движется вокруг центра Галактики с вдесятеро большей скоростью. А по сравнению со скоростью света 75 км/с – это просто улиточья скорость.
В соответствии с законом Хаббла галактика Андромеды должна удаляться от нас со скоростью 50 км/с, но в действительности она приближается к нам. Она находится слишком близко, чтобы хаббловское расширение превалировало над гравитационным притяжением между нашей Галактикой и галактикой Андромеды. Однако закон Хаббла никогда не рассматривался как точный закон, описывающий взаимное движение близкорасположенных галактик. Когда мы рассматриваем галактики, находящиеся достаточно далеко друг от друга, чтобы избежать взаимного притяжения, закон работает очень хорошо.
Читать дальше
Конец ознакомительного отрывка
Купить книгу