Ричард Фейнман - 9. Квантовая механика II

Здесь есть возможность читать онлайн «Ричард Фейнман - 9. Квантовая механика II» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

9. Квантовая механика II: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «9. Квантовая механика II»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

9. Квантовая механика II — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «9. Квантовая механика II», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Положение о котором идет речь иллюстрируется фиг 116 Фиг 116 Волны - фото 44

Положение, о котором идет речь, иллюстрируется фиг. 11.6.

Фиг 116 Волны в одномерной решетке а одним примесным атомом в n 0 - фото 45

Фиг. 11.6. Волны в одномерной решетке а одним «примесным» атомом в n= 0.

Используя формулы (11.32) для а -1и а +1, можно из сред­ней тройки уравнений (11.28) найти а 0и два коэффициента b и g. Таким образом, мы найдем полное решение. Надо решить три уравнения (полагая x n =nb) :

Вспомните что 1130 выражает E через k Подставьте это значение Е в - фото 46

Вспомните, что (11.30) выражает E через k . Подставьте это значение Е в уравнения и учтите, что

тогда из первого уравнения получится a 01b 1134 а из третьего a 0g - фото 47

тогда из первого уравнения получится

a 0=1+b, (11.34)

а из третьего

a 0=g, (11.35)

что согласуется друг с другом только тогда, когда

g=1+b. (11.36)

Это уравнение сообщает нам, что прошедшая волна (g) — это просто исходная падающая волна (1) плюс добавочная волна (b), равная отраженной. Это не всегда так, но при рассеянии на одном только атоме оказывается, что это так. Если бы у вас была целая группа атомов примеси, то величина, добавляемая к волне, бегущей вперед, не обязательно вышла бы такой же, как у отраженной волны.

Амплитуду b отраженной волны мы можем получить из среднего из уравнений (11.33); окажется, что

Мы получили полное решение для решетки с одним необычным атомом Вас могло - фото 48

Мы получили полное решение для решетки с одним необычным

атомом.

Вас могло удивить, отчего это проходящая волна оказа­лась «выше», чем падавшая, если судить по уравнению (11.34). Но вспомните, что b и g числа комплексные и что число частиц в волне (или, лучше сказать, вероятность обнаружить частицу) пропорционально квадрату модуля амплитуды. В дей­ствительности «сохранение числа электронов» будет выполнено лишь при условии

|b| 2+|g| 2=1. (11.38)

Попробуйте показать, что в нашем решении так оно и есть.

§ 7. Захват нерегулярностями решетки

Бывает и другой интересный случай. Он может возникнуть, когда F число отрицательное. Если энергия электрона в атоме примеси (при n= 0) ниже, чем где-либо в другом месте, то электрон может оказаться захваченным этим атомом. Иначе говоря, если Е 0+ F ниже самого низа полосы (меньше, чем Е 0 - 2 А), тогда электрон может оказаться «пойманным» в со­стояние с Е<���Е 0 - 2 А. Из всего того, что мы делали до сих пор, такое решение не могло получиться. Но это решение можно получить, если в пробном решении (11.15) разрешить k прини­мать мнимые значения. Положим k = ix. Для n <0 и для n >0 у нас опять будут разные решения. Для n >0 допустимое решение могло бы иметь вид

В экспоненте мы выбрали плюс иначе амплитуда при больших отрицательных n стала - фото 49

В экспоненте мы выбрали плюс; иначе амплитуда при больших отрицательных n стала бы бесконечно большой. Точно так же допустимое решение для n >0 имело бы вид

Если подставить эти пробные решения в 1128 то они удовлетворят всем - фото 50

Если подставить эти пробные решения в (11.28), то они удов­летворят всем уравнениям, кроме средней тройки, при условии, что

А раз сумма этих двух экспонент всегда больше 2 то эта энергия оказывается за - фото 51

А раз сумма этих двух экспонент всегда больше 2, то эта энергия оказывается за пределами (ниже) обычной полосы. Это-то мы и искали. Оставшейся тройке уравнений (11.28) удастся удовлетворить, если взять с = с' и если к выбрать так, чтобы

Сопоставив это уравнение с 1141 найдем энергию захваченного электрона - фото 52

Сопоставив это уравнение с (11.41), найдем энергию захвачен­ного электрона

Захваченный электрон обладает однойединственной энергией а не целой полосой - фото 53

Захваченный электрон обладает одной-единственной энергией (а не целой полосой); она расположена несколько ниже полосы проводимости.

Заметьте, что амплитуды (11.39) и (11.40) не утверждают, что пойманный электрон сидит прямо в атоме примеси. Вероят­ность обнаружить его у одного из соседних атомов дается квад­ратом этих амплитуд. Изменение ее показано столбиками на фиг. 11.7 (при каком-то наборе параметров).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «9. Квантовая механика II»

Представляем Вашему вниманию похожие книги на «9. Квантовая механика II» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Львовский - Отличная квантовая механика
Александр Львовский
Отзывы о книге «9. Квантовая механика II»

Обсуждение, отзывы о книге «9. Квантовая механика II» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x