Ричард Фейнман - 8. Квантовая механика I

Здесь есть возможность читать онлайн «Ричард Фейнман - 8. Квантовая механика I» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

8. Квантовая механика I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «8. Квантовая механика I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

8. Квантовая механика I — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «8. Квантовая механика I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 5. Ннтерферирующив амплитуды

Как же это может быть, что, когда переходят от (3.15) к (3.17), т. е. когда открывается больше каналов, через фильтры начинает проходить меньше атомов? Это и есть старый, глубо­кий секрет квантовой механики — интерференция амплитуд. С такого рода парадоксом мы впервые встретились в интерферен­ционном опыте, когда электроны проходили через две щели. Помните, мы тогда увидели, что временами кое-где получается меньше электронов, когда обе щели открыты, чем когда открыта одна. Численно это получается вот как. Можно написать ам­плитуду того, что атом пройдет в приборе (3.17) через Т и S' в виде суммы трех амплитуд — по одной для каждого из трех пучков в Т; эта сумма равна нулю:

Ни одна из трех отдельных амплитуд не равна нулю например квадрат модуля - фото 137

Ни одна из трех отдельных амплитуд не равна нулю: например, квадрат модуля второй амплитуды есть ga [см. (3.15)], но их сумма есть нуль. Тот же ответ получился бы, если бы мы настро­или S ’ на то, чтобы отбирать состояние (- S). Однако при рас­положении (3.16) ответ уже другой. Если обозначить амплитуду прохождения через Т и S' буквой а, то в этом случае мы будем иметь

В опыте 316 пучок сперва расщеплялся а потом восстанавливался Как мы - фото 138

В опыте (3.16) пучок сперва расщеплялся, а потом восста­навливался. Как мы видим, Шалтая-Болтая удалось собрать обратно. Информация о первоначальном состоянии (+ S) со­хранилась — все выглядит так, как если бы прибора Т вовсе не было. И это будет верно, что бы ни поставили за «до отказа раскрытым» прибором Т. Можно поставить за ним фильтр R — под каким-нибудь необычным углом — или что-угодно. Ответ будет всегда одинаков, как будто атомы шли в S ' прямо из пер­вого фильтра S.

Итак, мы пришли к важному принципу: фильтр Т или любой другой с открытыми до отказа заслонками не приводит ни к каким изменениям. Надо только упомянуть одно добавочное условие. Открытый фильтр должен не только пропускать все три пучка, но и не вызывать в них неодинаковых возмущений. Например, в нем не должно быть сильного электрического поля близ одного из пучков, которого не было бы возле других. Причина заключается вот в чем: хотя это добавочное возмуще­ние может и не помешать всем атомам пройти сквозь фильтр, оно может привести к изменению фаз некоторых амплитуд. Тогда интерференция стала бы не такой, как была, и амплитуды (3.18) и (3.19) стали бы другими. Мы всегда будем предполагать, что таких добавочных возмущений нет.

Перепишем (3.18) и (3.19) в улучшенных обозначениях. Пусть i обозначает любое из трех состояний (+ Т), (0 Т )и (- Т ); тогда уравнения можно написать так:

и Точно так же в опыте в котором S заменяется совершенно произвольным - фото 139

и

Точно так же в опыте в котором S заменяется совершенно произвольным фильтром - фото 140

Точно так же в опыте, в котором S' заменяется совершенно произвольным фильтром R, мы имеем

S Т R Результаты будут всегда такими же как если бы прибор Т убрали и осталось - фото 141

S Т R Результаты будут всегда такими же, как если бы прибор Т убрали и осталось бы только

Или на математическом языке Это и есть наш основной закон и он - фото 142

Или на математическом языке

Это и есть наш основной закон и он справедлив всегда если только i обозначает - фото 143

Это и есть наш основной закон, и он справедлив всегда, если только i обозначает три базисных состояния любого фильтра. Заметьте, что в опыте (3.22)никакой особой связи между S, R и Т не было. Более того, рассуждения остались бы теми же независимо от того, какие состояния эти фильтры отбирают. Чтобы написать уравнение в общем виде без ссылок на какие-то особые состояния, отбираемые приборами S и R, обозначим через j состояние, приготовляемое первым прибором (в нашем частном примере + S ) , и через c — состояние, подвергаемое испытанию в конечном фильтре (в нашем примере + R ) . Тогда мы можем сформулировать наш основной закон (3.23) так:

где i должно пробегать по всем трем базисным состояниям некоторого - фото 144

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «8. Квантовая механика I»

Представляем Вашему вниманию похожие книги на «8. Квантовая механика I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Львовский - Отличная квантовая механика
Александр Львовский
Отзывы о книге «8. Квантовая механика I»

Обсуждение, отзывы о книге «8. Квантовая механика I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x