Ричард Фейнман - 8. Квантовая механика I

Здесь есть возможность читать онлайн «Ричард Фейнман - 8. Квантовая механика I» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

8. Квантовая механика I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «8. Квантовая механика I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

8. Квантовая механика I — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «8. Квантовая механика I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы облегчить подобные рассуждения, мы сейчас приду­маем сокращенное изображение наших усовершенствованных приборов Штерна — Герлаха. Вместо каждого такого прибора мы будем ставить символ

Этот символ вы не встретите в квантовой механике мы попросту выдумали его для - фото 104

(Этот символ вы не встретите в квантовой механике; мы попросту выдумали его для этой главы. Он означает просто сокращенное изображение прибора, показанного на фиг. 3.3.) Поскольку мы I собираемся пользоваться несколькими приборами одновремен­но, имеющими к тому же разную ориентацию, то каждый из них мы будем отмечать буквой внизу. Так, символ (3.1) обозна­чает прибор S. Загораживая внутри один или больше пучков, мы будем отмечать это вертикальными чертами, показывающи­ми, какой из пучков перекрыт, наподобие

Различные мыслимые комбинации собраны на фиг 35 Фиг 35 Специальные - фото 105

Различные мыслимые комбинации собраны на фиг. 3.5.

Фиг 35 Специальные сокращенные обозначения для фильтров типа Штерна - фото 106

Фиг. 3.5. Специальные сокра­щенные обозначения для фильт­ров типа Штерна — Герлаха.

Если два фильтра сто­ят друг за другом (как на фиг. 3.4), мы и симво­лы будем ставить друг за другом:

При таком расположении все что прошло через первый фильтр пройдет и через - фото 107

При таком расположении все, что прошло через пер­вый фильтр, пройдет и через второй. В самом деле, даже если мы перекроем каналы «нуль» и «минус» второго прибора, так что будет

все равно прохождение через второй прибор будет 100ным Но если имеется - фото 108

все равно прохождение через второй прибор будет 100%-ным. Но если имеется

то из дальнего конца не выйдет ничего Равным образом ничего не выйдет и при - фото 109

то из дальнего конца не выйдет ничего. Равным образом ни­чего не выйдет и при

8 Квантовая механика I - изображение 110

С другой стороны,

8 Квантовая механика I - изображение 111

было бы просто эквивалентно одному только

8 Квантовая механика I - изображение 112

Теперь мы хотим описать эти опыты квантовомеханически. Мы скажем, что атом находится в состоянии (+ S ), если он прошел через прибор, изображенный на фиг, 3.5, б , что он находится в состоянии (0S), если прошёл сквозь прибор на фиг. 3.5, в, и что он находится в состоянии (- S), если прошел сквозь прибор на фиг. 3.5, г. Затем пусть < b|a > будет амплитуда того, что атом, который находится в состояний а, пройдя через прибор, окажется в состоянии b . Можно ска­зать < b | а > есть амплитуда для атома в состоянии а перейти в состояние b. Опыт (3.4) означает, что

<+ S |+ S >=1,

а (3.5) — что

<-S|+S>=0.

Точно так же и результат (3.6) означает, что

<+ S |- S >=0,

а (3.7)— что

<- S |- S >=1.

Пока мы имеем дело только с «чистыми» состояниями, т. е. пока бывает открыт только один канал, таких амплитуд — всего девять. Их можно перечислить в следующей таблице:

Эта совокупность девяти чисел именуемая матрицей подытоживает описанные нами - фото 113

Эта совокупность девяти чисел, именуемая матрицей, по­дытоживает описанные нами явления.

§ 2. Опыты с профильтрованными атомами

Теперь возникает важный вопрос: что будет, если второй

прибор наклонить под некоторым углом, так чтобы ось его поля больше не была параллельной оси первого? Его можно не только наклонить, но и направить в другую сторону, напри­мер повернуть пучок поперек. Вначале для простоты возьмем такое расположение, при котором второй прибор Штерна — Герлаха повернут вокруг оси у на угол а (фиг. 3.6).

Фиг 36 Два последовательно соединенных фильтра типа Штерна Герлаха - фото 114

Фиг. 3.6. Два последовательно соединенных фильтра типа Штерна — Герлаха.

Второй повернут, относительно первого на угол a .

Такой при­бор мы обозначим буквой Т. Пусть мы теперь предприняли следующий опыт:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «8. Квантовая механика I»

Представляем Вашему вниманию похожие книги на «8. Квантовая механика I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Львовский - Отличная квантовая механика
Александр Львовский
Отзывы о книге «8. Квантовая механика I»

Обсуждение, отзывы о книге «8. Квантовая механика I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x