Ричард Фейнман - 5a. Электричество и магнетизм

Здесь есть возможность читать онлайн «Ричард Фейнман - 5a. Электричество и магнетизм» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

5a. Электричество и магнетизм: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «5a. Электричество и магнетизм»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

5a. Электричество и магнетизм — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «5a. Электричество и магнетизм», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

где Dr впоследствии надо будет заменить на d/2. Завершая доказательство так, как это было сделано выше, мы приве­дем уравнение (6.19) к виду

Это то же уравнение что и 616 Надо только заменить qd на р и вставить - фото 68

Это то же уравнение, что и (6.16). Надо только заменить qd на р и вставить потерянный по дороге множитель 1/4pe 0. Взглянув на это уравнение по-иному, видим, что дипольный потенциал (6.13) можно толковать как

5a Электричество и магнетизм - изображение 69

(6.20)

где Ф 0=1/4pe 0r — потенциал единичного точечного заряда.

Хотя потенциал данного распределения зарядов всегда мо­жет быть найден при помощи интегрирования, иногда можно сберечь время, применив какой-нибудь хитроумный прием. Например, на помощь часто приходит принцип наложения. Если нам дано распределение зарядов, которое можно соста­вить из двух распределений с уже известными потенциалами, то искомый потенциал легко получить, просто сложив уже из­вестные между собой. Наш вывод формулы (6.20) — один из примеров применения этого приема.

А вот и другой. Пусть имеется сферическая поверхность, на которой поверхностный заряд распределен пропорционально косинусу полярного угла. Интегрировать такое распределение— задача, откровенно говоря, не из приятных. Но как ни странно, на помощь приходит принцип наложения. Представьте себе шар с однородной объемной плотностью положительных зарядов и другой шар с такой же однородной объемной плотностью заря­дов, но противоположного знака. Первоначально они вложены друг в друга, образуя нейтральный, т. е. незаряженный шар. Если затем положительный шар чуть сместить по отношению к отрицательному, то нутро незаряженного шара так и останется незаряженным, но на одной стороне возникнет небольшой поло­жительный заряд, а на противоположной — такой же отрица­тельный (фиг. 6.6). И если относительное смещение двух шаров мало, то эти заряды эквивалентны существованию поверхност­ного заряда (на сферической поверхности) с плотностью, про­порциональной косинусу полярного угла.

Когда же нам понадобится потенциал этого распределения то брать интегралы не - фото 70

Когда же нам понадобится потенциал этого распределения, то брать интегралы не нужно. Мы знаем, что потенциал каждого заряженного шара —- в точках вне его— совпадает с потенциа­лом точечного заряда. А два смещенных шара — все равно, что два точечных заряда; значит, искомый потенциал и есть как раз потенциал диполя.

Фиг. 6,6. Две равномерно заряженные сферы, вложенные друг в друга и слегка смещенные, эквивалентны неоднородному распределению

поверхностного заряда.

Таким путем можно показать, что распределение зарядов на сфере радиуса а с поверхностной плотностью

5a Электричество и магнетизм - изображение 71

создает снаружи сферы такое же поле, как и диполь с моментом

5a Электричество и магнетизм - изображение 72

Можно также показать, что внутри сферы поле постоянно и равно

5a Электричество и магнетизм - изображение 73

Если q — угол с положительной осью z, то электрическое поле внутри сферы направлено по отрицательной оси z. Рассмотрен­ный нами пример отнюдь не досужая выдумка составителя за­дач; он нам встретится еще в теории диэлектриков.

§ 5. Дипольное приближение для произвольного распределения

Столь же интересно и не менее важно поле диполя, возни­кающее при других обстоятельствах. Пусть у нас есть тело со сложным распределением заряда, скажем, как у молекулы воды (см. фиг. 6.2), а нас интересует только поле вдали от него. Мы покажем, что можно получить сравнительно простое выраже­ние для полей, пригодное для расстояний, много больших, чем размеры тела.

Мы можем смотреть на это тело, как на скопление точеч­ных зарядов q i в некоторой ограниченной области (фиг. 6.7). (Позже, если понадобится, мы q i заменим на pdV.) Пускай заряд q i удален от начала координат, выбранного где-то внутри груп­пы зарядов, на расстояние d i . Чему равен потенциал в точке Р, расположенной где-то на отлете, на расстоянии R, много боль­шем, чем самое большое из d i,? Потенциал всего нашего скопле­ния выражается формулой

5a Электричество и магнетизм - изображение 74

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «5a. Электричество и магнетизм»

Представляем Вашему вниманию похожие книги на «5a. Электричество и магнетизм» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «5a. Электричество и магнетизм»

Обсуждение, отзывы о книге «5a. Электричество и магнетизм» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x