Выберем теперь другой легкий путь, скажем тот, который изображен на фиг. 4.3, б. Он идет попеременно то по дуге окружности, то по радиусу. Каждый раз, когда путь пролегает по дуге, никакой работы не затрачивается. Каждый раз, когда путь идет по радиусу, интегрируется 1/r 2. По первому радиальному участку интеграл берется от r a до r a ’., по следующему — от r а . до r а "и т. д. Сумма всех таких интегралов как раз равна одному интегралу, но в пределах от r а до r b . В общем получится тот же ответ, что и в первом испробованном нами пути. Ясно, что и для любого пути, составленного из произвольного числа участков такого вида, получится тот же результат.
Ну а как насчет плавных траекторий? Получим ли мы тот же ответ? Этот вопрос мы обсудили в вып. 1, гл. 13. Пользуясь теми же доводами, что и тогда, мы можем заключить, что работа переноса единичного заряда от а до b от пути не зависит:


Фиг. 4.4. Работа, затраченная на движение вдоль любого пути от а до b, равна минус работе от некоторой точки Р 0 до а плюс работа от Р 0 до b.
А раз выполняемая работа зависит только от концов пути, то она может быть представлена в виде разности двух чисел. В этом можно убедиться следующим образом. Выберем отправную точку Р 0 и договоримся оценивать наш интеграл, пользуясь только теми траекториями, которые проходят через точку Р 0 . Обозначим работу, выполненную при движении против поля от Р 0 до точки а, через j(а), а работу на участке от Р 0 до точки b — через j(b) (фиг. 4.4). Работа перехода от а к Р 0 (по дороге к b ) равна j (a) с минусом, так что

(4.21)
Так как повсюду будет встречаться только разность значений функции j в двух точках, то положение точки Р 0 в сущности безразлично. Однако как только отправная точка выбрана, число j тем самым определяется в любой точке пространства; значит, j является скалярным полем, функцией от х, у, z. Эту скалярную функцию мы называем электростатическим потенциалом в произвольной точке.

Электростатический потенциал
(4.22)

Часто очень удобно брать отправную точку на бесконечности. Тогда потенциал j одиночного заряда в начале координат, взятый в произвольной точке (х, у, z), равен [см. уравнение (4.20)]
(4.23)
Электрическое поле нескольких зарядов можно записать в виде суммы электрических полей от первого заряда, от второго, от третьего и т. д. Интегрируя сумму для того, чтобы определить потенциал, мы придем к сумме интегралов. Каждый из них — это потенциал соответствующего заряда. Значит, потенциал j множества зарядов есть сумма потенциалов каждого из зарядов по отдельности. Таким образом, и для потенциалов существует принцип наложения. Пользуясь такими же аргументами, как и тогда, когда мы искали электрическое поле группы зарядов или распределения зарядов, мы можем получить окончательные формулы для потенциала j в точке, обозначенной как (1):


(4.24)
(4.25)
Не забывайте, что потенциал j имеет физический смысл: это потенциальная энергия, которую имел бы единичный заряд, если его перенести в указанную точку пространства из некоторой отправной точки.
§4. E = -Сj

С какой стати нас заинтересовал потенциал j? Силы, действующие на заряды, даются величиной Е — электрическим полем. Вся соль в том, что Е из j очень легко получить, не труднее, чем вычислить производную. Рассмотрим две точки с одинаковыми у и z, но с разными х: у одной х, у другой x+Dx;; поинтересуемся, какую работу надо совершить, чтобы перенести единичный заряд из одной точки в другую. Путь переноса — горизонтальная линия от хдо х+Dx.Работа равна разности потенциалов в двух точках
Читать дальше