По-моему, единственный способ, который позволит нам выжить, сохранив при этом нынешнее качество жизни, – это разработка ядерного синтеза как надежного и эффективного источника энергии. Речь идет не о делении урана, в результате которого ядра урана и плутония распадаются на части и излучают энергию, питающую ядерные реакторы, а именно о слиянии. В ходе этого процесса атомы водорода объединяются и создают гелий, высвобождая энергию. Ядерный синтез – это процесс, питающий звезды и термоядерные бомбы, самый мощный процесс производства энергии в расчете на единицу массы из всех известных, за исключением столкновения материи и антиматерии, которое, однако, нельзя считать потенциальным генератором энергии.
По довольно трудно объяснимым причинам для термоядерных реакторов подходят только определенные типы водорода (дейтерий и тритий). Дейтерий, ядро которого состоит из одного нейтрона и одного протона, легкодоступен; примерно один из каждых шести тысяч атомов водорода на Земле – дейтерий. Поскольку в наших океанах около миллиарда кубических километров воды, запасы дейтерия, по сути, безграничны. Тритий же в естественном виде на Земле не встречается (это радиоактивный элемент с периодом полураспада около двенадцати лет), но его несложно произвести в ядерных реакторах.
Сложность заключается в создании надежно работающего, практичного и полностью контролируемого ядерного реактора. Пока неясно, удастся ли когда-нибудь его сделать. Чтобы заставить ядра водорода соединиться, нужно создать на Земле температуру в диапазоне 100 миллионов градусов, приближающуюся к температуре ядра звезды.
Ученые бьются над этой задачей уже много лет, и, похоже, все более и более напряженно, ибо все больше правительств постепенно убеждаются в том, что энергетический кризис стал реальностью. Это, безусловно, огромная проблема. Но я оптимист. В конце концов, за долгую профессиональную жизнь я уже не раз становился свидетелем умопомрачительных изменений в своей области деятельности, буквально переворачивавших наши представления о Вселенной с ног на голову. Например, космология, которая прежде базировалась преимущественно на домыслах и совсем немного на науке, теперь стала поистине экспериментальной наукой, позволившей многое узнать о происхождении Вселенной. Фактически мы с вами живем во времена, которые не без оснований называют золотым веком космологии.
Когда я начал заниматься исследованиями в области рентгеновской астрономии, нам было известно лишь о десятке источников рентгеновского излучения в глубоком космосе. Теперь мы знаем о десятках тысяч. Пятьдесят лет назад вычислительные мощности килограммового ноутбука заняли бы б о льшую часть здания МТИ, где находится мой кабинет. Пятьдесят лет назад астрономы полагались в основном на наземные оптические и радиотелескопы – больше практически ничего не было! Сегодня же в нашем распоряжении не только космический телескоп «Хаббл», но и целый ряд рентгеновских спутниковых обсерваторий и обсерваторий для изучения гамма-излучения, и мы используем и строим новые обсерватории для исследования нейтрино! Пятьдесят лет назад даже вероятность гипотезы о некогда произошедшем Большом взрыве ставилась под сомнение. Сейчас же мы не только думаем, что знаем, как выглядела наша Вселенная в первую миллионную долю секунды после него, но и уверенно изучаем астрономические тела возрастом свыше 13 миллиардов лет – объекты, образовавшиеся в первые 500 миллионов лет после Большого взрыва, создавшего нашу Вселенную. Как же я могу на фоне всех этих глобальных открытий и преобразований не быть уверенным в том, что ученые решат задачу контролируемого ядерного синтеза? Я вовсе не намерен упрощать трудности или важность ее скорейшего решения, но считаю, что это лишь вопрос времени.
10. Рентгеновские лучи из космоса!
Небо всегда ежедневно и еженощно бросало вызов людям, которые издавна стремились понять окружающий мир, и это одна из причин, по которой многие физики очарованы астрономией. «Что такое Солнце? – не перестаем размышлять мы. – И почему оно движется?» А что такое Луна, планеты и звезды? Только представьте, сколько сил и времени потребовалось нашим предкам, чтобы выяснить, что планеты отличаются от звезд, что они вращаются вокруг Солнца и их орбиты можно наблюдать, составлять их карты, объяснять и предсказывать их движение. Многие из величайших научных умов XVI–XVII веков – Николай Коперник, Галилео Галилей, Тихо Браге, Иоганн Кеплер, Исаак Ньютон и другие – не могли оторвать взгляда от неба в надежде разгадать эти потрясающие загадки. Представьте, что почувствовал Галилео, когда навел свой телескоп на Юпитер, который казался чуть больше светящейся точки, и обнаружил на его орбите четыре маленьких спутника! И в то же время как же всем этим великим людям должно было быть досадно оттого, что они так мало знали о звездах, начинавших призывно светиться в небе каждый вечер! Примечательно, что и древнегреческий философ Демокрит, и астроном XVI века Джордано Бруно, предполагали, что звезды похожи на наше Солнце, но у них не было никаких доказательств, способных подтвердить эту гипотезу. Что такое звезды? Что удерживает их в небе? Насколько далеки они от Земли? Почему одни звезды ярче других? Почему они разных цветов? А что это за широкая полоса света, которая ясной ночью тянется от горизонта к горизонту?
Читать дальше
Конец ознакомительного отрывка
Купить книгу