Представьте себе камень (любой массы), падающий на Землю с высоты нескольких сотен тысяч километров. С какой скоростью он войдет в атмосферу Земли? К сожалению, мы не можем в данном случае использовать простое уравнение, приведенное выше, согласно которому скорость равна квадратному корню из 2gh, потому что ускорение земного притяжения сильно зависит от расстояния до Земли. На расстоянии, как до Луны (около 386 тысяч километров) это ускорение примерно в 3600 раз меньше, чем у поверхности Земли. Чтобы избежать излишне сложных расчетов, поверьте мне на слово: интересующая нас скорость составит более 40 тысяч километров в час!
Думаю, теперь вы наверняка поняли, насколько важна гравитационная потенциальная энергия в астрономии. Как мы будем обсуждать в главе 13, когда материя падает с большого расстояния на нейтронную звезду, она обрушивается на нее со скоростью примерно 160 тысяч километров в секунду, да-да, в секунду! Иными словами, при массе камня всего один килограмм его кинетическая энергия составляла бы около 13 тысяч триллионов (13 × 10 15) джоулей, что примерно равно количеству энергии, вырабатываемой крупной (1000 МВт) электростанцией за полгода.
Способность разных видов энергии снова и снова преобразовываться друг в друга, безусловно, замечательна сама по себе, но еще более удивителен факт отсутствия чистых потерь энергии. Их не бывает вообще. Потрясающе! А ведь именно поэтому мой строительный таран до сих пор меня не угробил.
Подтягивая 15-килограммовый шар к подбородку по вертикали на расстояние h, я увеличиваю его гравитационную потенциальную энергию на mgh. После того как я отпускаю его, под действием силы тяжести он начинает раскачиваться через весь зал, и mgh преобразуется в кинетическую энергию. В данном случае h – это расстояние по вертикали между моим подбородком и самым низким положением груза на конце веревки. Когда шар достигает низшей точки колебания, его кинетическая энергия составляет mgh. По мере того как он завершает дугу и достигает верхнего предела колебания, кинетическая энергия снова преобразуется в потенциальную – поэтому в самой высокой точке колебания шар на мгновение останавливается. Нет кинетической энергии – нет движения. Но это длится всего долю секунды, потому что шар начинает опять двигаться вниз, совершая очередное колебание, и потенциальная энергия снова преобразуется в кинетическую. Сумма кинетической и потенциальной энергии называется механической энергией, и при отсутствии трения (в нашем случае сопротивления воздуха) суммарная механическая энергия не меняется – она сохраняется.
Это означает, что шар никогда не долетит до точки, хоть немного выше той, в которой его отпустили, если только в каком-то месте его пути ему не будет придана дополнительная энергия. Таким образом, аэродинамическое сопротивление – моя надежнейшая подушка безопасности. Им отбирается очень небольшое количество механической энергии маятника и преобразуется в тепло. В результате груз останавливается в считаных миллиметрах от моего подбородка, как вы можете увидеть на видео лекции № 11 из курса 8.01. Сьюзен смотрела эту демонстрацию трижды, и каждый раз вздрагивала. Меня постоянно спрашивают, много ли я тренировался, чтобы показывать такой опасный фокус, и я всегда отвечаю чистую правду: мне не нужны тренировки, потому что я на сто процентов доверяю закону сохранения энергии. Но если бы я хоть немного толкнул шар, отпуская его – скажем, случайно кашлянул именно в этот момент, – он качнулся бы назад до места чуть выше, чем то, в котором я его отпустил, и разбил бы мне подбородок.
Следует отметить, что сохранение энергии было открыто во многом благодаря сыну английского пивовара, жившему в XIX веке, Джеймсу Джоулю. Его работа была настолько важна для понимания природы энергии, что в его честь международная единица измерения энергии была названа джоулем. Отец послал Джеймса и его брата учиться к известному ученому-экспериментатору Джону Дальтону. Очевидно, Дальтон хорошо учил Джоуля. Позже, унаследовав пивоварню отца, Джоуль провел в ее подвале множество новаторских экспериментов, различными хитроумными способами изучая характеристики электричества, тепла и механической энергии. Помимо всего прочего, он, помещая катушки из разных видов металла с пропускаемым в них током в емкости с водой и измеряя, как при этом меняется ее температура, обнаружил, что электрический ток генерирует в проводнике тепло.
Читать дальше
Конец ознакомительного отрывка
Купить книгу