Я привожу в книге это уравнение для того, чтобы вы могли оценить, насколько точно его истинность подтверждается моими демонстрациями. Согласно данному уравнению период колебания маятника длиной в 1 метр составляет приблизительно 2 секунды. Я засекаю время, которое требуется маятнику с нитью такой длины, чтобы произвести десять колебаний, и у меня получается примерно 20 секунд. Делим на 10 и получаем период колебания 2 секунды. Тогда я перехожу к маятнику с нитью в четыре раза короче первой. В соответствии с уравнением его период колебания должен быть в два раза меньше. У моего маятника нить длиной 25 сантиметров, и на десять колебаний у него действительно уходит около 10 секунд. Пока все идет вполне обнадеживающе.
Чтобы подвергнуть выведенное уравнение более тщательной проверке, чем с использованием маленького маятника из нити с яблоком, я соорудил в аудитории другой простой маятник: канат длиной 5,18 метра со сферическим стальным грузом весом 15 килограммов. Я называю его отцом всех маятников.
Каким же будет период колебания ( T ) такого, куда более внушительного маятника? Подставив значения, получаем T = 2 π √(5,18/9,8), то есть 4,57 секунды. Чтобы проверить этот результат, как было обещано студентам в начале лекции, я измеряю период колебания при амплитудах 5 и 10 градусов.
Я использую большой цифровой таймер, который могут видеть все студенты, показывающий время с точностью до одной сотой секунды. Время моей реакции при его включении и выключении за много лет проверено неоднократно, и я знаю, что оно составляет примерно одну десятую секунды (в удачный день). Это означает, что если я сделаю один и тот же замер десяток раз, то получу данные о периоде колебания маятника, которые будут отличаться не более чем на 0,1 (ну, возможно, на 0,15) секунды. Так что, измерю я время одного колебания или десяти, погрешность полученного показателя будет приблизительно плюс-минус 0,1 секунды. Поэтому я позволяю маятнику колебаться десять раз, что дает в десять раз более точное значение периода его колебания, чем если бы он качнулся всего один раз.
Я отвожу груз так, чтобы угол наклона каната относительно вертикальной оси составлял около 5 градусов, отпускаю его и одновременно включаю таймер. Студенты хором считают колебания, и после десятого качка я останавливаю таймер. Потрясающе – таймер показывает 45,70 секунды, в десять раз больше моей оценки времени одного колебания. Студенты в восторге аплодируют.
Тогда я увеличиваю амплитуду до 10 градусов, отпускаю груз и запускаю таймер; аудитория считает до десяти, я останавливаю таймер: 45,75 секунды. 45,75 ± 0,1 секунды за десять колебаний дает 4,575 ± 0,01 секунды на одно колебание. Результат для амплитуды в 5 градусов практически такой же, как для амплитуды в 10 градусов (в пределах погрешности данных измерений). Так что мое уравнение по-прежнему очень точное.
Затем я спрашиваю аудиторию: предположим, я сяду на груз и буду качаться вместе с ним – останется ли период колебаний прежним или изменится? Не могу сказать, что сплю и вижу, как бы забраться на эту штуку верхом (это, знаете ли, довольно больно), но ради науки, да и чтобы повеселить студентов и еще больше заинтересовать предметом, я никогда не упускаю данной возможности. Конечно, я не могу сидеть на грузе вертикально, потому что в этом случае сильно сокращу длину каната и, соответственно, несколько уменьшу период колебания. Но если пристроить тело, насколько это возможно, в максимально горизонтальном положении, чтобы быть на одном уровне с грузом, длина веревки останется практически прежней. Итак, я засовываю груз между ног, берусь за канат, сажусь на груз верхом и начинаю качаться.
Признаюсь, включать и выключать таймер, изображая груз маятника, не увеличив при этом время реакции, довольно трудно. Но я практиковал это так много раз, что совершенно уверен в своей способности сохранить погрешность измерений в пределах ± 0,1 секунды. Я качаюсь десять раз, пока студенты хором считают колебания и хохочут над абсурдностью моего положения, поскольку я, качаясь, нарочито громко причитаю и стону, – и после десятого колебания останавливаю таймер. Он показывает 45,61 секунды. Период одного колебания – 4,56 ± 0,01 секунды. «Уравнение работает!» – кричу я. Студенты в полном восторге.
Другим весьма запутанным аспектом гравитации является то, что у нас может сложиться ложное впечатление, будто она действует с совсем другого направления, нежели на самом деле. Сила земного тяготения всегда притягивает объект к центру Земли на Земле, а не где-нибудь на Плутоне, конечно. Но порой кажется, что она действует в горизонтальном направлении, и эта искусственная, или мнимая, гравитация, как ее называют физики, иногда фактически попирает саму гравитацию.
Читать дальше
Конец ознакомительного отрывка
Купить книгу