Главный вопрос, конечно же, заключался в том, что было причиной этих вспышек. Двое моих коллег из Гарварда (в том числе Джош Гриндлей, один из первооткрывателей рентгеновских вспышек), увлекшись, высказали в 1976 году идею, что вспышки – это продукт черных дыр с массой, более чем в несколько сот раз превышающей массу Солнца.
Вскоре мы обнаружили, что спектры во время рентгеновских вспышек напоминают спектры от охлаждающегося абсолютно черного тела. Черное тело не черная дыра. При любой температуре оно поглощает все падающее на него излучение во всех диапазонах, не отражая ни одну из его разновидностей. (Как вы знаете, черные объекты поглощают излучение, в то время как белые его отражают, – именно поэтому черный автомобиль, оставленный летом в Майами на пляжной стоянке, всегда нагревается сильнее белого.) Еще одна характеристика абсолютно черного тела заключается в том, что, поскольку оно ничего не отражает, единственное излучение, которое оно может испускать, является результатом его собственного нагрева. Вспомните о нагревательном элементе в электрической печи. Достигнув температуры приготовления пищи, он начинает светиться красным цветом, испуская низкочастотный красный свет. Если заставить его стать еще горячее, он начнет светиться оранжевым, затем желтым и, как правило, более никаким. При отключении от электросети элемент охлаждается, и испускаемое им излучение более или менее сильно напоминает по своим характеристикам хвостовую часть спектра вспышек. Спектры абсолютно черных тел настолько хорошо изучены, что, если измерять такой спектр на протяжении некоторого времени, можно по мере его охлаждения вполне точно рассчитать температуру.
Поскольку абсолютно черные тела хорошо изучены, мы можем очень многое узнать о вспышках, отталкиваясь от знаний из области элементарной физики, и это, безусловно, потрясающе. Так мы и поступили, проанализировав спектры рентгеновского излучения неизвестных источников, расположенных в 25 тысячах световых лет от нас, и в итоге сделали революционное открытие, используя базовые законы физики, известные каждому первокурснику МТИ!
Мы знаем, что полная светимость абсолютно черного тела (количество энергии, излучаемой им в секунду) пропорциональна четвертой степени его температуры (это ни в коей мере не интуитивная информация) и площади его поверхности (тут вывод как раз интуитивно понятен: чем больше площадь, тем больше энергии может испустить тело). Иначе говоря, если у нас есть две сферы диаметром один метр и одна в два раза горячее другой, то первая будет излучать в 16 раз (2 4) больше энергии, чем вторая. Так как площадь поверхности сферы пропорциональна квадрату ее радиуса, мы также знаем, что при неизменной температуре объект утраивается в размерах и будет излучать в девять раз больше энергии в секунду.
Спектр рентгеновского излучения в любой момент вспышки рассказывает нам о температуре абсолютно черного тела излучающего объекта. Во время вспышки температура быстро поднимается до около 30 миллионов кельвинов и в последующий период медленно снижается. А поскольку нам было известно приблизительное расстояние до этих барстеров, мы могли также вычислить светимость источника в любой момент вспышки. Зная температуру и светимость абсолютно черного тела, можно рассчитать и радиус излучающего объекта, причем тоже для любого момента вспышки. Первым это сделал Джин Суонк из Центра космических полетов имени Годдарда НАСА; мы в МТИ быстро последовали его примеру и пришли к выводу, что эти вспышки – следствие охлаждения объекта с радиусом около 10 километров. Это было убедительным доказательством того, что источники вспышек – нейтронные звезды, а не очень массивные черные дыры. А если это нейтронные звезды, то, скорее всего, рентгеновские двойные.
В 1976 году МТИ посетила итальянский астроном Лаура Марачи. В один прекрасный февральский день она вошла в мой кабинет и высказала идею, что изучаемые нами вспышки являются результатом термоядерных вспышек, огромных термоядерных взрывов на поверхности аккрецирующих нейтронных звезд. Когда в нейтронной звезде накапливается водород, потенциальная гравитационная энергия преобразуется в тепло такой огромной силы, что испускаются рентгеновские лучи (см. предыдущую главу). Но, как предположила Лаура, накапливаясь на поверхности нейтронной звезды, эта аккрецирующаяся материя может подвергнуться ядерному синтезу в ходе неконтролируемого процесса (как в водородной бомбе), что и приводит к рентгеновской вспышке. А следующий взрыв может произойти через несколько часов, когда опять скопится достаточное количество ядерного топлива. С помощью простых расчетов на доске в моем кабинете Марачи продемонстрировала, что материя, мчащаяся со скоростью около половины скорости света к поверхности нейтронной звезды, высвобождает гораздо больше энергии, чем выделяется при термоядерных взрывах, на что, собственно, и указывали имеющиеся у нас данные.
Читать дальше
Конец ознакомительного отрывка
Купить книгу