Поскольку человек способен мыслить только трехмерно, мы не можем в полной мере визуализировать картину того, как массивная звезда сделает воронку из четырехмерного пространства-времени. Думать о гравитации как об искривлении пространства-времени нас научил Альберт Эйнштейн, превратив ее в вопрос геометрии, хотя и не той, которую вы учили в средней школе.
Следует признать, пример с колготками неидеален – я уверен, многие из вас, услышав это, вздохнут с облегчением – по целому ряду причин. Главная из них – невозможность представить маленький шарик, вращающийся по стабильной орбите вокруг созданного большущим камнем гравитационного колодца. Однако в реальном астрономическом мире многие объекты находятся на стабильных орбитах вокруг массивных тел миллионы, даже миллиарды лет. Подумайте хотя бы о Луне, вращающейся вокруг Земли, о Земле, вращающейся вокруг Солнца, о Солнце и еще сотне миллиардах звезд, вращающихся в нашей Галактике.
Впрочем, эта простая демонстрация действительно помогает представить себе черную дыру. Мы можем, например, наглядно убедиться в том, что чем массивнее объект, тем глубже воронка и более круты ее склоны, и, следовательно, тем больше энергии потребуется, чтобы из нее выбраться. Уменьшается даже энергия электромагнитного излучения, которому удается преодолеть силу тяжести массивной звезды, а это значит, что уменьшается частота излучения, а волны становятся длиннее. Вы уже знаете, что сдвиг к менее энергетическому концу электромагнитного спектра называется красным смещением. Так вот, в случае с компактной звездой (массивной и малого размера) имеет место красное смещение, вызванное действием силы тяжести, которое мы называем гравитационным красным смещением, – не следует путать его красным смещением вследствие доплеровского сдвига (см. главу 2и следующую главу).
Чтобы покинуть поверхность планеты или звезды, нужна минимальная скорость, которая не позволит упасть на нее обратно. Она называется скоростью убегания и на Земле составляет около 11 километров в секунду. Следовательно, скорость любого спутника Земли не может превышать это значение. Чем выше скорость убегания, тем больше энергии понадобится для того, чтобы покинуть поверхность, так как она зависит как от скорости убегания, так и от массы m объектов, желающих совершить побег (требуемая кинетическая энергия равна mv ²/2).
Надеюсь, вы понимаете, что если гравитационный колодец становится очень, очень глубоким, скорость убегания из его нижней части может стать больше скорости света. Но поскольку это невозможно, то, стало быть, из очень глубокого гравитационного колодца не может вырваться ничто, даже электромагнитное излучение.
Физик по имени Карл Шварцшильд решил уравнения общей теории относительности Эйнштейна и вычислил, каким должен быть радиус сферы с заданной массой, чтобы создать такой колодец, то есть черную дыру. Этот радиус называется радиусом Шварцшильда, и его размер зависит от массы объекта. По сути, это и есть радиус того, что астрономы нарекли горизонтом событий.
Само уравнение умопомрачительно простое, но оно подходит только для невращающихся черных дыр, часто называемых черными дырами Шварцшильда [26]. Уравнение включает в себя хорошо известные константы и выдает радиус немногим менее трех километров в расчете на одну солнечную массу. С его помощью мы можем рассчитать, что размер, вернее радиус, горизонта событий черной дыры, скажем с массой 10 солнечных масс, составляет около 30 километров. Мы можем также вычислить радиус горизонта событий черной дыры с массой Земли – он будет меньше одного сантиметра, – однако никаких доказательств того, что такие черные дыры существуют, нет. Стало быть, если бы масса Солнца сконцентрировалась в сферу с радиусом около 6 километров, было бы это похоже на нейтронную звезду? Нет, под действием гравитационного притяжения такой большой массы, утрамбованной в столь маленькую сферу, материя Солнца свернулась бы в черную дыру.
Еще задолго до Эйнштейна, в 1748 году, английский философ и геолог Джон Мичелл показал, что в небе могут быть звезды, гравитационное притяжение которых настолько велико, что свет не может покинуть их поверхность. Используя простую ньютоновскую механику (сегодня любой из моих первокурсников сделает это за 30 секунд), Мичелл пришел к тому же выводу, что и Шварцшильд: если масса звезды в N раз превышает массу Солнца, а ее радиус меньше 3N километров, свет не может ее покинуть. Поразительно: общая теория относительности Эйнштейна дает тот же результат, что и простой ньютоновский подход.
Читать дальше
Конец ознакомительного отрывка
Купить книгу