1 ...6 7 8 10 11 12 ...18
6. Акустический луч (красный), излучаемый на глубине z m , проходит между двумя плоскостями, от которых он полностью отражается. Зависимость скорости звука от глубины c ( z ) в океане представлена зеленой кривой. Значения z 1 и z 2 (считаем, что глубина равна 0 на поверхности) зависят от угла падения луча на глубине z m и определяются законом Снеллиуса: c ( z 1 ) = c ( z 2 ) = c m /sin α ( z m )
Простая модель
Интересно рассмотреть случай, когда скорость звука c – простая функция глубины z. Например, функция, имеющая минимум в z m : c ( z ) = c ( z m ) + k ( z – z m ) 2, где k – константа. В этом случае кривая, иллюстрирующая изменение скорости звука в зависимости от глубины (зеленая на илл. 5 и 6), является параболой. На самом деле это приближение почти всегда справедливо для глубин z , близких к z m . Звуковой луч, немного отклоняющийся от горизонтали, следует по синусоиде, период которой не зависит от угла падения, так что все звуковые лучи в одной вертикальной плоскости сходятся в точках оси z = z m (илл. 7). Эти точки аналогичны фокусам оптических приборов, таких как линзы, в которых сходятся падающие световые лучи, поэтому наблюдается явление фокусировки звуковых волн. Параболическая форма кривой хорошо описывает изменение скорости звука в зависимости от частоты в глубинах океана. Однако, поскольку кривая c ( z ) на практике не является параболой, то фокусировка звука не идеальна.
Заключение
Когда звук излучается на соответствующей глубине в море, значительная часть звуковой энергии оказывается заперта в «акустических каналах». Достаточное ли это объяснение для прохождения звука от Австралии до Бермудских островов? Попробуем подсчитать. Хотя рассмотренный нами механизм описывает именно распространение звука в океане, остаются возможными еще два направления. Звуковая волна, излучаемая в середине океана, проходит в течение времени t расстояние R порядка с зв. t, где с зв. – средняя скорость звука в воде, скажем, 1500 м/с. Даже если предполагается, что потери равны нулю, энергия звуковой волны должна распределяться по всей, примерно цилиндрической, поверхности зоны 2π Rh , где разница в глубине h между верхней и нижней границами канала может достигать глубины океана. Таким образом, интенсивность звука уменьшается как 1/ R по мере удаления от источника. Это происходит не так резко, как затухание, пропорциональное 1/ R 2звука в воздухе (илл. 3), но и оно едва ли оставляет надежду на то, что звук, раздавшийся в Австралии, будет услышан на Бермудах. Однако если приемник звука находился в точке фокуса, где сходятся звуковые лучи (илл. 7), а величина h невелика, то в принципе отголосок взрыва мог быть услышан. Кроме того, можно допустить, что колебания солености и температуры в толще океана на пути звуковых лучей создают и вертикальные отражающие стенки, препятствующие рассеянию энергии звуковой волны. И все же удивительно, что звук достигает Бермудских островов в обход мыса Доброй Надежды, учитывая дополнительное поглощение энергии, например, пузырьками воздуха или планктоном.
7. Явление фокусировки звуковых лучей
8. Пример миража в Ливийской пустыне. По мере приближения к раскаленному песку солнечные лучи встречают все более горячий воздух (и, следовательно, среду с уменьшающимся показателем преломления): таким образом, они, как и звуковые лучи на илл. 7, все сильнее отклоняются вплоть до отражения. Наблюдателю кажется, что в продолжении этих отраженных лучей он видит воду
Распространение звука в естественных подводных каналах – не единственный случай волновода, созданного природой. Еще несколько примеров связаны со спецификой распространения электромагнитных волн. Наиболее эффектны миражи, которые возникают из-за непрямолинейного распространения света в очень неравномерно нагретой атмосфере (илл. 8). Кроме того, можно вспомнить короткие радиоволны, которые распространяются на большие расстояния благодаря отражению в ионосфере – верхней области атмосферы на высоте от 60 до 800 км. При определенных условиях радиоприемник может принимать радиопередачи из других стран.
Читать дальше