Аналогия с проблемой спасателя
Спасатель (А), которому нужно как можно скорее спасти пловца (B), бежит по пляжу быстрее, чем плывет в море. Самый краткий путь, прямой (1), не будет самым быстрым: спасатель потеряет много времени в море. Если же он максимально сократит время плавания (3), то значительно увеличит путь по пляжу. В итоге самый быстрый путь (2), проходящий через C, – тот, который отвечает закону Снеллиуса
Так объясняется появление световых дуг, но не их цветов… На самом деле точное значение угла отражения зависит от цвета, так как показатель преломления воды n увеличивается, когда длина волны уменьшается. Итак, для фиксированного угла падения i угол преломления увеличивается с длиной волны, то есть двигается от синего к красному. Это значит, что отклонение на входе и выходе капли сильнее для синего, чем для красного. Таким образом, с внешней стороны дуги появляется красный цвет. Все наоборот во вторичной радуге, цвета которой расположены в обратном порядке: красный внутри. Эти вытекающие из геометрии и законов преломления странности – примеры сюрпризов, что порой несут нам научные расчеты.
Рассматривая картину Рылова, мы еще не обсудили птиц, которые составляют неотъемлемую часть обаяния морских берегов. Давайте исправим это упущение такой задачей: как часто птице заданной массы нужно взмахивать крыльями, чтобы лететь? Возможно, читателю трудно будет увидеть связь между этими величинами, и он решит, что авторы играют с ним как кошка с мышкой.
Пусть m – масса птицы, S – общая площадь крыльев, v – средняя скорость крыла, t – продолжительность удара крыла и ρ – плотность воздуха. Во время взмаха крылом птица перемещает воздушную массу, равную M = ρ Svt , и сообщает ей скорость v , что соответствует среднему ускорению v / t , поэтому сила F = Mv / t = ρ Sv 2должна сбалансировать вес mg птицы, где g – ускорение свободного падения. Так,
Скорость v крыла пропорциональна количеству взмахов крыльев в секунду υ и длине крыла, которая также пропорциональна
Предполагая (довольно произвольно), что коэффициент пропорциональности равен 2π, находим:
Для серой цапли (илл. 10) масса m составляет порядка 1 кг. Размах ее крыльев – около 2 м, и можно предположить, что площадь S ≈ 0,2 м 2. При приблизительных значениях ρ = 1 кг/м 3и g = 10 м/с 2скорость крыла будет составлять порядка 3 взмахов в секунду, что вполне соответствует реальности между 2 и 3 взмахами в секунду в машущем полете.
10. Площадь крыла серой цапли примерно равна одной десятой квадратного метра
Пойдем дальше и предположим, что все птицы имеют тело той же формы и плотности. Площадь крыльев S в таком случае пропорциональна m 2/3, и из предыдущей формулы следует, что количество взмахов крыльев в секунду обратно пропорционально m 1/6. Действительно, υ уменьшается при увеличении массы птицы: воробей (масса которого составляет порядка 20–30 г) совершает 13 взмахов в секунду, голубь (масса около 500 г) – до 8–9 взмахов, а сарыч (масса примерно килограмм) – до 3.
А насекомые? На картине Рылова их не видно, так как они слишком малы. У насекомых частота взмахов крыла значительно выше, чем у птиц, что соответствует нашей формуле. Предельный случай – комары, которые совершают примерно 400 взмахов в секунду. Ударяя воздух с такой частотой, насекомое производит слышимый человеком звук, чем предупреждает о своих атаках! Зная, что масса комара составляет 2 мг, и предполагая, что крылья имеют площадь поверхности S порядка 10 мм 2, можно заключить, что фактическая частота примерно в 10 раз выше, чем значение, получаемое по нашей формуле. В этом нет ничего удивительного, формула действительно очень приблизительна, и скорее следует удивляться тому, что она дает разумные значения частот взмахов крыльями для крупных птиц и насекомых.
Читать дальше