Система обеспечивает учёт пространственно-временной и спектральной структуры излучения во всём многомерном оптическом диапазоне, в том числе и через оптические помехи, создаваемые природными объектами и возможными катастрофическими и нежелательными проблемными явлениями природного и техногенного характера.
В современной науке происходит фундаментальный скачок перехода с понятия решения локальной (точечной, узкой) цели или задачи к понятию и осознанию распределённой в пространстве и времени цели в её нормальном, целесообразном и безопасном развитии, то есть к объёмному и всестороннему взаимодействию поставленной цели с окружающим Миром, со всеми структурами и связями. Появляется необходимость осознания и определения в фоновом объёме пространства (проявленного и непроявленного) специфических характеристик воплощения цели на принципах нормирования как самого пространства в целом, так и полученных результатов.
Кроме того, восприятие и взаимодействие с фоновой обстановкой, с её оптическим спектром в наблюдаемом пространстве, приводит к гармоничному взаимодействию со всеми элементами реальности и связями (существенными и сильными, или неопределёнными, ультра-слабыми или нежелательными), позволяет учитывать наличие сильных помех от фонов и своевременно адаптировать систему под реальную обстановку, т. е. вводить необходимые корректировки в обработку сигнала и использовать дополнительные системы нормирования для сглаживания опасных всплесков амплитуды в оптическом модуле системы.
Исследования оптических фонов проводятся более полувека, но большинство результатов получено в видимой, ближней инфракрасной области спектра до 3—4 мкм. Причём это, как правило, кратковременные измерения, не имеющие статистического продолжения, систематизации и практических рекомендаций. Они в традиционных устройствах могут быть использованы только для ориентировочных расчётов для оценки фоновых ситуаций. Современная практика показывает, что оптико-электронные системы обнаружения не всегда способны решить поставленные задачи, особенно в сложных метеорологических условиях, не могут адаптироваться к многообразию сопутствующих параметров в условиях конкретной цели, в связи с этим являются в ряде случаев малоэффективными.
Можно ли создать системы, которые были бы высокоэффективны в любых условиях реальности, и как поднять и оценить их эффективность? Предложенная модель устройства и является такой адаптивной системой. Она использует новые методы взаимодействия пространственно-временной и спектрального проявления цели на вероятностном фоне окружающей обстановки, создавая условия, в которых оператор и система будут действовать максимально эффективно для конкретных планируемых действий на условиях нормирования и оптимизации имеющихся связей, в которой целеполагание, прогнозирование и нормирование – это одновременный итерационный процесс.
Исследования вероятностных фоновых полей в оптическом диапазоне можно параметризовать, классифицировать по набору статистических признаков и характеристик. Существуют исследования в области собственного излучения фоновых ситуаций (помех) в интервале 8—13 мкм. При использовании международной классификации форм и количества баллов облаков параметризация по оптическим признакам может быть осуществлена для широкого класса фоновых ситуаций и ансамблей. Это означает, что их можно объективно распознавать с помощью аппаратурных средств как днём, так и ночью, планировать практическое использование и закладывать в информационные программы конкретные действия системы обнаружения и управления. Для взаимодействия с фоновой обстановкой выявляются и используются пространственно-временные параметры, данные о «времени жизни» – существовании и физическом проявлении фонового состояния природных сред и техногенных процессов.
Настоящее исследование направлено на разработку и совершенствование системы, заданной идеологией прибора политрон. Система «Метатрон» использует рациональные и иррациональные методы взаимодействия оператора по заданной цели (намерения) как единой системы с окружающим миром (фоновой обстановкой) с целью гармоничного и безопасного воплощения цели и последующей адаптации (нормирования) всех структур к реальной конкретной задаче.
Система позволяет определять и учитывать многомерный излучающий оптический спектр с учётом атмосферных неоднородностей небосвода. Основными научными положениями построения оптической системы являются:
Читать дальше