Ричард Фейнман - Характер физических законов

Здесь есть возможность читать онлайн «Ричард Фейнман - Характер физических законов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Литагент АСТ, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Характер физических законов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Характер физических законов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В основу этой книги, больше 50 лет состоящей в списке международных бестселлеров, легли знаменитые лекции Ричарда Фейнмана, прочитанные им в 1964 году в Корнеллском университете. В этих лекциях прославленный физик рассказывает о фундаментальных законах природы и величайших достижениях мировой физики, не утративших своей актуальности и по сей день, – рассказывает простым доступным языком, понятным даже самому обычному читателю. Чего только стоит его знаменитая аналогия с мокрым человеком, который пытается вытереться мокрым полотенцем, на примере которой он объясняет закон сохранения энергии!..

Характер физических законов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Характер физических законов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь мне нужно проверить еще один факт: выяснить, есть ли здесь интерференция или нет. Ведь мы пока еще не говорили, что происходит, если закрыть одно из отверстий. Попытаемся проанализировать получающуюся любопытную кривую, предполагая, что электроны попадают в детектор либо через одно отверстие, либо через другое. Закроем одно из отверстий и измерим, сколько электронов попадает в различные участки последнего экрана через отверстие 1 . В результате получим простую кривую N 1. Точно так же мы можем закрыть второе отверстие, измерить число электронов, попадающих в детектор через отверстие 2 , и получим кривую N 2. Тем не менее, если открыть оба отверстия, мы не получим суммы N 1+ N 2, так что интерференция действительно есть. Значит, в самом деле нужно при математических выкладках пользоваться этой странной формулой, согласно которой вероятность попадания равна квадрату амплитуды, которая, в свою очередь, представляет собой сумму двух слагаемых: N 12= ( a 1+ a 2) 2. Вопрос как раз и заключается в том, как же так может быть, что если электроны проходят лишь через отверстие 1 , они оказываются распределенными одним образом, когда они проходят лишь через отверстие 2 , они распределяются по-другому, но тем не менее в том случае, когда открыты оба отверстия, не получается суммы двух этих распределений. Например, если детектор установить в положении q и открыть оба отверстия, в него практически ничего не попадет, но в то же время стоит мне закрыть одно из них, детектор начнет работать независимо от того, какое из отверстий было закрыто. Опять откроем оба отверстия, и вновь ничего. Мы позволили электронам пролетать в детектор через оба отверстия, а они сразу перестали прилетать совсем. Или выберем точку строго посредине: нетрудно убедиться, что здесь число прилетающих электронов больше суммы электронов, прилетающих через каждое отверстие по отдельности. Кажется, если подумать хорошенько, всегда можно найти какое-то объяснение: например, электроны могут возвращаться обратно через те же отверстия, а затем проходить через них еще раз, или с ними происходит какой-нибудь другой сложный процесс, или возникает возможность расщепления электрона на два, пролетающих через разные отверстия, или что-нибудь в этом роде, как-то объясняющее это явление. Но пока еще никому не удалось придумать удовлетворительное объяснение такого рода, потому что конечный вид математических закономерностей очень уж прост (суммарная кривая получается очень простой (см. рис. 32)).

Теперь подведем итог. Итак, электроны попадают в детектор дискретными порциями, как если бы это были частицы, но вероятность попадания этих частиц определяется по тем же законам, по каким определяется интенсивность волнения воды. Именно в этом смысле можно говорить, что с одной точки зрения электрон ведет себя как частица, а с другой – как волна. Он ухитряется одновременно быть двумя совершенно разными понятиями (см. табл. 2).

Вот и все, что можно сказать по этому поводу.

Я мог бы привести сейчас математическое описание того, как вычислять вероятность попадания электрона при произвольных обстоятельствах, и в принципе на этом можно было бы закончить лекцию. Но в том, что природа ведет себя именно так, а не иначе, есть несколько тонкостей. Мы сталкиваемся с целым рядом непонятных явлений, и именно о них мне и хотелось бы поговорить сейчас, поскольку они не вытекают сразу же из того, что рассказано мной выше.

Таблица 2

Начнем с одного утверждения казалось бы разумного поскольку мы установили - фото 23

Начнем с одного утверждения, казалось бы разумного, поскольку мы установили дискретный характер электронов или фотонов. Так как в детектор приходит нечто целое (электрон в нашем примере), по-видимому, разумно предположить, что электрон попадает в детектор либо через отверстие 1 , либо через отверстие 2 . Кажется очевидным, что, так как электрон нечто целое и неделимое, ничего другого и не может быть. Назовем это утверждение утверждением А.

Утверждение А :

Электрон попадает в детектор

либо через отверстие 1 ,

либо через отверстие 2 .

На самом деле мы уже немного говорили о том, что происходит с утверждением А. Если бы было верно, что электрон попадает в детектор либо через отверстие 1 , либо через отверстие 2 , то общее число зарегистрированных электронов должно было бы распадаться на сумму электронов двух типов. Общее число этих электронов было бы суммой числа электронов, прилетевших через первое отверстие, и числа электронов, прилетевших через второе. Но так как суммарную кривую не удается представить таким удобным образом в виде суммы двух других кривых и поскольку эксперимент, позволяющий регистрировать прилетающие электроны в случае, когда открыто только одно отверстие, показывает, что в случае двух отверстий мы не наблюдаем суммы двух вероятностей появления, приходится заключить, что это утверждение неверно. Но если неверно, что электрон попадает в детектор либо через отверстие 1 , либо через отверстие 2 , может быть, он временно распадается на две половины или что-нибудь в этом роде. Итак, утверждение А ложно. Такова логика. К сожалению или нет, но логику можно проверять экспериментально. Теперь нам нужно решить, что же происходит на самом деле. Попадает ли электрон в детектор либо через отверстие 1 , либо через отверстие 2 , или, может быть, он успевает проскочить каждое из отверстий по нескольку раз в разных направлениях, или расщепляется временно на две части, или что-нибудь другое в этом же духе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Характер физических законов»

Представляем Вашему вниманию похожие книги на «Характер физических законов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Характер физических законов»

Обсуждение, отзывы о книге «Характер физических законов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x