Jaume Navarro - Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.

Здесь есть возможность читать онлайн «Jaume Navarro - Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, Издательство: Де Агостини, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.

Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
БЛЕСТЯЩИЕ И НЕЗАКОМПЛЕКСОВАННЫЕ ЮНОШИ

Историки науки много раз задавались вопросом, как возможно, чтобы поколение молодых ученых, происходивших в основном из Германии и Австрии, сумело изменить облик физики за такой короткий срок. Необходимость объяснить абсолютно новые явления, возникшая после открытия рентгеновских лучей, радиоактивности и электрона,— недостаточный аргумент. В странах, проигравших Первую мировую войну, было очень неспокойно. Гиперинфляция в Германии и, в меньшей степени, в Австрии, наряду с постоянными революционными движениями со всех сторон политического спектра, определили атмосферу неуверенности, где понятие «вероятности» накладывалось на понятие «причинной обусловленности». Молодые ученые видели необходимость разрыва со старой традицией, которая привела их страны к катастрофе. Есть и еще один аспект. В обстановке кризиса и неуверенности, если кто-то хотел получить должность в университете, нужно было уметь привлечь к себе внимание. Так социально-экономическая обстановка определила рискованный ход мысли для молодежи, озабоченной своим профессиональным будущим. Естественно, мы говорим только о тех революционных идеях, которые работали, иначе можно было бы вспомнить множество теорий, отошедших в мир иной; имена их создателей так и не попали в историю науки. Несомненно одно: в более стабильной, более традиционной ситуации идеи таких людей, как Гейзенберг и Паули, принять было бы сложнее.

Вернер Гейзенберг Первым с кем он обменялся идеями был Паули и только на - фото 30

Вернер Гейзенберг.

Первым, с кем он обменялся идеями, был Паули, и только на исходе лета взволнованный Бор увидел, что спустя десять лет его радикальная идея уже устарела, а молодые ученые вроде Гейзенберга и Паули меняют облик физики. По достоинству оценил проделанную Гейзенбергом работу его старый учитель и коллега по Геттингену Макс Борн, в большей степени математик, чем физик. Он увидел, что числовые отношения, найденные Гейзенбергом, совпадают с алгеброй Давида Гильберта (1862-1943), выведенной за несколько лет до этого также в Гёттингене. То есть идеальная конструкция (гильбертовы пространства), сформулированная для развития чистой математики, нашла практическое применение в объяснении физики самого малого и невообразимого.

Как толковал свою новую теорию сам Гейзенберг? Что означало забыть об орбитах и траекториях и сосредоточиться на наблюдаемых энергиях и амплитудах? Сотрудничество Бора и Гейзенберга достигло одной из кульминационных точек, которой стало появление так называемого «принципа неопределенности Гейзенберга». Он утверждает, что невозможно измерить одновременно и точно скорость и положение определенной частицы (то же самое справедливо для любой пары «сопряженных» величин, таких как энергия и время). Невозможность эта не просто техническая: она свойственна самому процессу измерения в атомном масштабе, поскольку само измерение предполагает значительное воздействие на измеряемое.

На макроскопическом уровне этого не происходит. Представим себе, как мы наблюдаем за тем, что находится внутри абсолютно темной комнаты. Мы можем взять фонарик, и если мы будем осторожными, наше наблюдение не окажет воздействия на содержимое комнаты. Но если мы захотим измерить содержимое атома, для его «освещения» будет использован поток света, энергия которого — того же порядка, что и у электронов внутри, поэтому мы получим информацию о результате взаимодействия света с электронами, а не о том, какими были электроны до облучения. Выходит, что на внутриатомном уровне измерение — это процесс, который изменяет саму систему и, следовательно, предоставляет информацию не о том, какой была эта система до наблюдения, а о том, какой она стала после.

Итак, принцип неопределенности — это отход от самого понятия траектории и местоположения. Другими словами, Гейзенберг, Бор и Паули считали, что физика должна сосредоточиться на начальных и конечных условиях изучаемых событий, а не на процессе, который они преодолевают, поскольку вмешаться в сам процесс означает изменить его. Это то же самое, что исследовать поведение воды в состоянии покоя в бассейне, погрузившись в нее. Изучаемое состояние будет полностью изменено, и любые полученные данные будут соответствовать не стоячей воде, а совокупности вода-пловец.

ЧАСТИЦЫ И ВОЛНЫ

Наряду с головоломкой о внутренней структуре атома физика начала XX века столкнулась с другой загадкой — с природой таких излучений, как свет, рентгеновские лучи и радиоактивность. Что такое свет? Что это за «объект*'? Вопрос завораживал натурфилософов эпохи Возрождения и Барокко, включая Галилея, Декарта и Ньютона, но они не пришли к окончательному соглашению. Из-за авторитета Ньютона в XVIII веке многие точно следовали его идеям и считали очевидным, что свет состоит из потока световых частиц. Хотя также были свидетельства, позволявшие предположить, что свет ведет себя как волна. В XIX веке тенденция изменилась, и особенно после работ Максвелла, подтвержденных в 1888 году Генрихом Герцем (1857-1894), уже никто не сомневался, что свет — это волна и что Ньютон ошибался.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.»

Представляем Вашему вниманию похожие книги на «Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.»

Обсуждение, отзывы о книге «Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x