Интересно сравнить полученное Больцманом распределение (12) с распределением Максвелла (7). Формулы отличаются лишь функцией U(x, y, z) в показателе экспоненты. При U(x, y, z) — 0 из распределения Больцмана получается распределение Максвелла, которое становится, таким образом, частным случаем полученного Больцманом более общего результата. Соотношение (12) получило в физике название распределения Максвелла — Больцмана.
Физические результаты, вытекающие из соотношений (7) и (12), принципиально различны. В отсутствие внешних сил разные положения молекул в пространстве равновероятны, и молекулы с одинаковой средней плотностью заполняют весь предоставленный им объем (рис. 8 а). Больцман установил, что когда газ находится во внешнем поле U(x, y, z), то наряду с тепловым движением молекул следует учитывать их потенциальную энергию. Это приводит к тому, что молекулы будут распределяться в сосуде неравномерно (рис. 8 б). Большая часть молекул будет сосредоточиваться в том месте, где их потенциальная энергия минимальна.
Результаты, полученные Больцманом, получили высокую оценку Максвелла: «Опубликованные мною в 1860 г. результаты подвергались затем более строгому исследованию доктора Л. Больцмана, применившего также свой метод к изучению движения сложных молекул».
Работа Больцмана допускала многочисленные физические применения. Так, если внешним полем является поле сил тяжести
U(h) = mgh,
где h — высота над поверхностью Земли, то из теории следует, что концентрация молекул будет уменьшаться с высотой по закону
n k= п 0 ∙exp (-βmgh), (13)
где n 0— концентрация молекул на уровне моря, β — зависящий от температуры коэффициент. Соотношение (13) получило в физике название барометрической формулы. О ее исключительной важности говорит хотя бы тот факт, что позднее с ее использованием были впервые получены экспериментальные доказательства реальности существования атомов (об этом будет рассказано в третьей части книги).
Другим следствием теории явился полученный Больцманом вывод о том, что в вертикальном столбе газа температура не изменяется с высотой. Этот результат вызвал возражения со стороны учителя и друга Больцмана Й. Лошмидта, который увидел в этом дополнительный аргумент в пользу «тепловой смерти» Вселенной. Рассуждения Лошмидта были довольно просты — если температура в вертикальном столбе не изменяется, то в масштабе Вселенной это и будет означать признание ее «тепловой смерти». Не признавая этой теории, Лошмидт утверждал, что температура в столбе не может быть постоянной, а второе начало термодинамики во Вселенной должно нарушаться. В результате острой, но дружеской дискуссии, направленной на глубокий анализ основ теории, Больцман доказал ошибочность утверждений своего оппонента.
Однако до полного признания распределения Максвелла, теперь уже распределения Максвелла — Больцмана, было еще далеко. Напомним, что вывод Максвелла был далеко не строгим. В таких случаях всегда возникают вопросы: «Единственно ли найденное распределение?» или «Не будет ли получен в результате более строгого вывода иной результат?» Конечно, можно было бы попытаться проверить найденное соотношение в эксперименте, но техника того времени еще не позволяла надеяться на подобную проверку.
Первую попытку доказательства единственности распределения выполнил сам Максвелл. Интересен ход его рассуждений. Если газ находится в состоянии термодинамического равновесия, то в нем установилось не меняющееся со временем — стационарное — распределение частиц по скоростям. Если v и v’ — скорости частиц до и после столкновения, то на первый взгляд возрастание числа частиц со скоростями v’ должно точно следовать за уменьшением числа частиц со скоростями v. Однако следует учитывать и то, что после столкновения частицы могут иметь и другую скорость . Процесс изменения скоростей, полагал Максвелл, будет продолжаться до тех пор, пока ряд скоростей v, v’ , v”,… снова не придет к скорости v. Обмен между частицами, имеющими различные скорости из этого ряда, приводит к тому, что число частиц, имеющих данную скорость, сохраняется постоянным, а из этого следует, что полученное распределение будет единственным.
Эти рассуждения не кажутся Больцману убедительными. В работе «Дальнейшее изучение теплового равновесия молекул газа» (1872) он приводит ряд возражений против доказательства Максвелла и дает строгий вывод распределения. Больцман видит принципиальные погрешности доказательства Максвелла в рассмотрении изменения скорости отдельной частицы, в то время как в процессе столкновений участвуют и одновременно изменяют свои скорости как минимум две молекулы. Стационарное распределение молекул по скоростям, отмечает Больцман, возникает и поддерживается именно в результате таких парных столкновений. Если же соударений нет, то однажды заданное распределение будет сохраняться сколь угодно долго, а значит, допускается возможность любого произвольного распределения. Больцман также не согласен с утверждением Максвелла о том, что ряд скоростей v, v’, v”,… , v имеет одностороннюю направленность, поскольку обратные переходы v,… , v”, v’ , v будут происходить так же часто, как и прямые.
Читать дальше