Вернувшись в Гёттинген, Гейзенберг показал свою таблицу амплитуд Борну, который интерпретировал ее как матрицу — математический объект, состоящий из чисел, расположенных в строках и столбцах. Борн привлек одного из своих аспирантов, Паскуаля Йордана, к работе над изучением математического аппарата того, что впоследствии стало известно как матричная механика.
Борн хорошо знал, что произведение двух матриц дает разные ответы в зависимости от порядка их умножения. В отличие от стандартного умножения чисел, для которых 2x3 — это то же, что и 3х2, при умножении матриц А х В — в общем случае, это не то же самое, что В х А. Если порядок не имеет значения, то говорят, что величины коммутируют, а матрицы, для которых результат зависит от порядка их умножения, называются некоммутирующими. Поскольку в системе Гейзенберга для определения таких физических характеристик, как координата и импульс, используются некоммутирующие матрицы, то порядок измерения этих величин имеет значение. Иначе говоря, если сначала измерить координату частицы, а потом ее импульс, то результат будет не таким, как если бы мы сначала измерили импульс, а потом координату.
Гейзенберг позже покажет, что эта некоммутативность приводит к принципу неопределенности, который делает невозможным точное одновременное измерение определенных пар физических величин. Например, координата и импульс электрона не могут быть одновременно точно измерены. Если одна величина определяется с высокой степенью точности, значение другой должно быть сильно неопределенным. Это как на фотографии, где в идеальном фокусе может быть или передний план, или задний, но не оба. Если фотограф попытается навести резкость на ближайший к нему предмет, то удаленный станет размытым, и наоборот. Аналогичным образом, если физик решит провести эксперимент, позволяющий абсолютно точно определить местоположение электрона, импульс электрона станет «размазанным» по бесконечному диапазону значений, то есть — неизвестным вовсе.
Абстракцию матричной механики сразу невзлюбило сообщество физиков-экспериментаторов с их склонностью к осязаемым наглядным объяснениям. Только после того как была создана волновая механика и показана ее эквивалентность матричной механике, объединенная квантово-механическая теория получила широкое признание.
Эйнштейн, сторонник концепции бога Спинозы, пришел в ужас от одного из поразительных следствий теории Гейзенберга: если координата и импульс не могут быть измерены одновременно и точно, то невозможно определить координаты и скорости всех объектов во Вселенной и предсказать их будущее. Подобное упущение не беспокоило Гейзенберга и Борна, которым было комфортно работать с вероятностной механикой вместо точной классической механики. Эйнштейн же яростно сражался против отказа от строгого детерминизма в пользу идеи случайного поведения частиц.
Любопытно, что Эйнштейн, один из основателей квантовой теории, оказался противником своего собственного творения. Тем не менее мы должны отличать оригинальную идею кванта, которая просто означала дискретную порцию энергии или другой физической величины, от полностью сформировавшейся квантовой механики, системы, которая на атомном масштабе заменяет детерминистическую классическую механику. К примеру, в описании фотоэффекта, предложенном Эйнштейном, электрон поглощает дискретное количество энергии в виде фотона, а затем использует полученное ускорение, чтобы оторваться от поверхности металла и далее двигаться в пространстве уже непрерывно (и детерминированно). Эйнштейн возражал против парадоксальной идеи о том, что электрон поглощает фотон, а затем мгновенно оказывается совершенно в другом месте. Кажущиеся дискретными случайные скачки должны иметь непрерывное, причинное объяснение в рамках более глубокой теории, полагал Эйнштейн.
Эйнштейн не видел никаких проблем со случайностью как с инструментом, но не как с фундаментальным принципом природы. Эйнштейн знал, что в статистической механике случайность необходима как способ описания совокупного поведения неисчислимого множества атомов, взаимодействующих друг с другом и с окружающей средой. Классическая механика точно описывала простые взаимодействия между парами объектов, но не справлялась с расчетом сложных систем с большим количеством компонентов. Вот где работает случай, верил Эйнштейн, — не как основополагающий закон, а скорее как способ представления хаотичных движений.
Читать дальше