Пол Хэлперн - Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Здесь есть возможность читать онлайн «Пол Хэлперн - Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: СПб., Год выпуска: 2016, ISBN: 2016, Издательство: Питер, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.
Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.
Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.
Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?

Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Несмотря на это, неевклидова геометрия не такая уж и либеральная. Как и у предшественницы, у нее есть свои ограничения. Суть неевклидовой геометрии заключается в том, чтобы заменить аксиому параллельных прямых новым утверждением, но оставить при этом остальные постулаты неизменными. Раз аксиома параллельных независима, то она в некотором смысле заменяема, что делает возможным новые варианты геометрии.

Первым, кто предложил идею неевклидовой геометрии, был Карл Фридрих Гаусс, хотя он и не рискнул опубликовать свои ранние соображения [2] Первым это сделал русский математик Николай Иванович Лобачевский, опубликовавший свою пионерскую работу «О началах геометрии» в журнале «Казанский вестник» в 1829 году. Ознакомившись с трудами Лобачевского, Гаусс рекомендовал избрать Лобачевского иностранным членом-корреспондентом Гёттингенского королевского научного общества как «одного из превосходнейших математиков русского государства». Избрание Лобачевского состоялось в 1842 году. — Примеч. пер. . В версии Гаусса, которую позже Клейн назвал «гиперболической геометрией», аксиома параллельности заменена утверждением о том, что через точку, не лежащую на данной прямой, можно провести неограниченное число прямых, параллельных данной прямой. Представьте, что вы крепко сжали в руке бумажный веер прямо над длинным узким столом. Если стол — это прямая, а ваша рука — точка, не лежащая на прямой, то складки веера показывают множество прямых, которые не пересекают исходную прямую. Термин «гиперболическая» происходит оттого, что расхождение параллельных прямых напоминает то, как расходятся ветви гиперболы.

Гаусс заметил любопытное свойство треугольников в гиперболической геометрии: сумма их углов была меньше 180°. Это отличает гиперболическую геометрию от евклидовой, где сумма углов треугольника всегда равна 180°. Например, в равнобедренном прямоугольном треугольнике два угла равны 45°, а третий — 90°. Талантливый художник М. К. Эшер вдохновился этим различием для создания любопытных узоров из искаженных не-180-градусных треугольников, существующих в гиперболической реальности.

Можно попробовать проиллюстрировать гиперболическую геометрию следующим образом: представьте себе точки, прямые и геометрические фигуры, расположенные не на плоскости, а на поверхности в форме седла или, если эпикурейские удовольствия вам ближе, в форме изогнутых картофельных чипсов. Из-за формы седла находящиеся рядом прямые будут расходиться друг от друга. Как бы им ни «хотелось» идти прямо, они будут отклоняться друг от друга и никогда не встретятся. Это приводит к тому, что через данную точку вы можете провести неограниченное число прямых, не пересекающих прямую, лежащую в стороне от данной точки. Кроме того, седловая форма поверхности «сжимает» треугольники; делая сумму их углов меньше 180°.

Другая версия неевклидовой геометрии впервые была предложена студентом Гаусса Бернхардом Риманом в 1854 году и опубликована в 1867 году. Она стала известна под названием «эллиптическая геометрия»; которое предложил Клейн. В этой геометрии аксиома параллельных заменена утверждением; полностью исключающим возможность существования непересекающихся прямых. Она говорит о том; что через данную точку, не лежащую на данной прямой; невозможно провести ни одной прямой; не пересекающейся с данной. Другими словами; все прямые; проходящие через точку, не лежащую на данной прямой; должны пересекать эту прямую где-то в пространстве. Риман показал; что таким свойством обладают прямые на поверхности сферы.

Если отсутствие параллельных прямых кажется вам странным; представьте себе Землю. Каждый меридиан пересекается со всеми остальными на Северном и Южном полюсах. То есть если какой-нибудь амбициозный путешественник начнет свой путь из центра Торонто строго на север; прямо по Янг-стрит; главной улице города; потом наймет собачью упряжку и ледокол и продолжит свой путь на Северный полюс; в то время как его сестра в это же самое время пойдет по аналогичному маршруту, только из Москвы, то вначале их пути будут казаться параллельными, но, несмотря на это, родственники неизбежно встретятся.

Любопытно, что такой запрет существования параллельных прямых повлиял на свойства треугольников иным образом. В эллиптической геометрии сумма углов треугольника превышает 180°. Возможен, например, треугольник, все углы которого прямые, а сумма углов равна 270°. Примером может служить треугольник, составленный из нулевого и 90-градусного меридианов, а также из соединяющей их части экватора. У такого треугольника все три стороны будут пересекаться под прямыми углами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания»

Представляем Вашему вниманию похожие книги на «Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания»

Обсуждение, отзывы о книге «Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x