Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей

Здесь есть возможность читать онлайн «Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2022, ISBN: 2022, Жанр: Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения.
Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель».
В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие.
Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Почему три вида кривых, и только они, оказались решением двух столь различных задач (задача Кеплера и конические сечения) – вопрос, который нельзя было не задать некоторое число раз за те триста с лишним лет, как этот факт выяснился (конические сечения как таковые были известны в Древней Греции). Эллипс, кроме того, геометрически полностью симметричен относительно двух фокусов, что видно уже из построения с ниткой, показанного на рис. 1.1; но в Солнечной системе нет никакой «нитки», которая указывала бы планете, как двигаться, а сила действует на планету всегда и только в сторону одного из фокусов. Как же геометрия возникает из закона тяготения? Самый простой ответ: она получается как решение уравнений. Этот ответ, однако, никак не проясняет механизм, а из-за того, что уравнения здесь дифференциальные, он не относится к числу «элементарных». Есть ли элементарное решение, т. е. такое, которое позволяет перевести одну задачу (нахождение орбиты) в другую (построение конического сечения), причем делает это «непосредственно» и без использования математических средств типа дифференциального исчисления? Такое элементарное решение известно; в частности, ему посвящена «забытая» лекция Фейнмана – забытая на фоне других, прочитанных им в Калтехе и вошедших в «Фейнмановские лекции по физике». Однако Фейнман предваряет рассуждения таким предупреждением:

Элементарное вовсе не означает легкое для понимания. Элементарное означает, что для понимания не требуется почти никаких предварительных знаний, кроме бесконечно развитых умственных способностей.

Две «разные» параболы. Параболы оказались ответами в двух задачах: «планета» (частный случай движения вокруг центра притяжения, скажем Солнца) и «стрела», или, выразительнее, «камень» (движение, начинающееся под углом к горизонту вблизи земной поверхности). Одна и та же математическая кривая вполне может оказаться решением уравнений, записанных для различных систем, при разных предположениях. В задаче «планета» предполагается, что сила притяжения убывает при увеличении расстояния – «обратные квадраты», как это записано в (1.1). Парабола может тогда получиться в качестве решения при тщательно подобранных начальных условиях. В задаче «камень» предполагается другое: вблизи земной поверхности сила притяжения практически постоянна; поэтому можно спокойно пренебречь тем, как она убывает по мере подъема над поверхностью. В такой постановке задачи траектория брошенного тела – всегда парабола (разумеется, если убрать весь воздух – например, перенести эксперимент на Луну и там от души пострелять из рогатки), за очевидным исключением случаев бросания строго вверх и строго вниз. Если все же проявить дотошность и решить задачу про камень, не забывая, что притяжение ослабевает с высотой (и меняет направление по мере смещения вдоль земной поверхности!), то траектория от старта до падения окажется частью очень вытянутого эллипса – очень коротким отрезком его дуги вблизи его верхней части. На рис. 1.8 изображена часть эллипса, вытянутого несравненно слабее, чем тот, на который можно запустить камень любыми подручными средствами, но рисунок передает идею: небольшая дуга эллипса практически совпадает с параболой. Траекторией является только та часть каждой кривой, которая находится над поверхностью Земли, и, пока максимальная высота подъема мала по сравнению с радиусом планеты, участок эллипса неотличим от параболы. Поэтому вблизи поверхности Земли можно считать, что брошенные под углом к горизонту тела летят по параболе. Это Галилей и установил.

Рис 18Часть эллипса светлосерая линия и часть параболы темносерая - фото 10

Рис. 1.8.Часть эллипса (светло-серая линия) и часть параболы (темно-серая линия), которые неразличимо близки около вершины. Широкой линией показана поверхность Земли. Только участки кривых, которые лежат выше нее, могут быть траекториями брошенных тел, а в этой части эллипсы очень похожи на параболы, пока они достаточно близки к поверхности

Точная парабола возникает в задаче о стрельбе с поверхности Земли, когда притяжение Земли учитывается «по-настоящему», в соответствии с законом тяготения Ньютона, а скорость имеет строго определенное значение. Если вы стреляете из суперпушки, расположенной на поверхности, то при достаточной скорости снаряда, посланного под углом к горизонту, он отправится путешествовать вокруг Земли, описывая эллипс. Если скорость выстрела еще увеличить, то наступит момент, когда снаряд уйдет от Земли неопределенно далеко. Минимальную скорость, при которой это происходит, называют второй космической скоростью или параболической скоростью. Это минимальная скорость освобождения: та скорость, которую необходимо придать телу, чтобы оно преодолело гравитацию, например, Земли и улетело «совсем». Движение тогда происходит по параболе! (Разумеется, если запустить снаряд быстрее, то он тем более улетит от Земли – но уже не по параболе, а по гиперболе.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей»

Представляем Вашему вниманию похожие книги на «Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей»

Обсуждение, отзывы о книге «Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x