Человек, намеревающийся стать физиком, обязан понимать смысл этого исторического анекдота. Поэтому про начальное – затравочное – магнитное поле можно на первых порах сказать, что уж какое-нибудь найдется, а дальше экспонента его подхватит и «выведет в люди».
Этот ответ со временем перестает удовлетворять физиков. Скажу по секрету, сдачу в магазине люди тоже обычно пересчитывают, по крайней мере приблизительно. Истории о великих ученых вообще не стоит понимать слишком буквально.
Так откуда же все-таки берется это затравочное магнитное поле? Просматриваются два возможных ответа. Во-первых, условие электронейтральности все-таки не нужно понимать с унылой серьезностью как выполненное абсолютно точно. Небольшие нескомпенсированные заряды, безусловно, существуют. В проводящей среде возникает и что-то подобное электрическим батареям, течет очень слабый электрический ток, который создает слабое электрическое поле. Всего этого, кажется, хватает для создания начального магнитного поля. Оно растет со временем только степенным образом. Экспоненту так не сделаешь, но с этим справится уже динамо. Это более или менее очевидная и поэтому не такая привлекательная возможность.
Есть и другая возможность. Она, как говорил один мой однокурсник, ставший со временем известным физиком, увлекательно-завлекательная. Правда, обычно он так говорил, когда в жизни случалась какая-нибудь очередная гадость.
Так вот, почему бы этому начальному полю не появиться уже вместе с самой Вселенной? Такая космологическая природа магнитного поля – интересная возможность. И конечно, теоретики не упустили ее из виду. Действительно, в самой ранней Вселенной образуются самые разнообразные элементарные частицы, из которых потом строятся все остальные тела. С точки зрения физики элементарных частиц магнитное поле можно – с некоторым напряжением – рассматривать как особую частицу. Так что рождается и она.
Не стоит говорить обо всех перипетиях истории магнитного поля в ранней Вселенной. Расскажем только про один эпизод. Оказывается, в мире элементарных частиц само собой происходит нарушение зеркальной симметрии. Частицы бывают правые и левые, то есть у них ненулевая спиральность. Некоторые реакции с частицами идут по-разному в зависимости от спиральности. Этот факт в 50-е гг. прошлого века был обнаружен экспериментально на ускорителях элементарных частиц. Это была совершенно невероятная сенсация.
Много лет никто особенно не обращал внимания на то, что спиральность в мире элементарных частиц очень похожа на те спиральные, циклонические потоки, о которых в это же самое время в первых работах о солнечном динамо говорил Юджин Паркер [19] Parker, E. N. Hydromagnetic dynamo models. Astrophysical Journal 1955, 122, 293.
.
Сейчас специалисты по теории динамо с удовольствием разрабатывают этот параллелизм, сравнивая происходящее в микромире и в астрофизике. Не буду настаивать, что именно это обстоятельство является ключом к пониманию природы затравочного магнитного поля, но сама картина получается красивая.
Еще одной областью, где эти идеи могут найти применение, является вопрос о магнитных полях нейтронных звезд. Эти звезды до какой-то степени можно рассматривать как исполинские атомные ядра, в которых практически все протоны соединились с электронами в нейтроны. Наблюдатели настаивают, что в таких звездах встречаются магнитные поля тоже исполинской напряженности. Динамо, основанное на зеркальной асимметрии, происходящей из мира элементарных частиц, позволяет понять природу таких магнитных полей.
Пока я сижу в самоизоляции, я не только пишу эту книгу, но и прочитал корректуру статьи на эту тему, которую написал со своими друзьями-соавторами (в частности, с В. Б. Семикозом) и которая публикуется в американском журнале Physical Review [20] Dvornikov M., Semikoz V. B., Sokoloff D. D. Generation of strong magnetic fields in a nascent neutron star accounting for the chiral magnetic effect. Physical Review D 101, № 083009, 2020.
.
Глава 5
От космического магнетизма к другим областям физики
Космический магнетизм интересен и сам по себе, но от него перекидываются мостики к другим самым различным областям современной физики. Было бы обидно не поговорить и о них.
Во времена моего студенчества важнейшей частью нашей жизни был праздник Архимеда. До наших дней он дошел как День физика и в той или иной степени инкорпорировался в череду различных профессиональных праздников – от Дня рыбака до Дня геолога. В этом, наверное, есть своя логика, но что-то дорогое для моего поколения при этом потерялось. Мне, например, трудно себе представить, чтобы на день Архимеда строительные рабочие собирали специальную сцену. Но у каждого времени свои праздники.
Читать дальше