Проблема с угловым моментом становится еще более острой при перетекании вещества с одного тела на другое, скажем с одной звезды двойной системы на другую. Тут уж наличие углового момента очевидно: звезды двойной системы обращаются вокруг общего центра масс.
Как компромисс между тяготением и сохранением углового момента и возникает аккреционный диск. Изучение свойств аккреционных дисков тоже захватывающая область астрофизики. В этой области отечественная наука отметилась всем известными (в узких кругах, конечно) учеными: много лет назад Н. И. Шакура и Р. А. Сюняев написали основополагающую статью про аккреционные диски с фантастическим индексом цитирования – не к ночи вспомним наукометрию [18] Shakura, N. I., Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astronomy and Astrophysics 1973, 24, 337S. https://ui.adsabs.harvard.edu/abs/1973A%26A….24..337S/abstract .
.
Аккреционные диски чем-то напоминают спиральные галактики. Собственно, и те и другие плоские именно потому, что в них борются сила тяготения и сохранение углового момента.
Аналогия между спиральными галактиками и аккреционными дисками в течение многих лет очевидна специалистам по динамо. Специалисты по аккреционным дискам не сомневаются, что магнитное поле очень помогло бы решить их задачи.
Казалось бы, в чем проблема? Перелицовка старых работ не кажется таким уж трудным занятием. И в самом деле, на эту тему уже написано довольно много работ, но вопрос все-таки еще далеко не так ясен, как для галактик. Не будем говорить обо всех возникающих в этом разделе теории динамо проблемах, достаточно двух примеров.
Спиральные галактики, по крайней мере ближайшие из них, хорошо видны в достаточно большой телескоп как протяженные объекты. Некоторые из них, например известная всем людям моего поколения по знаменитому когда-то роману И. А. Ефремова туманность Андромеды, видны на небе невооруженным глазом. Очень многие их характеристики, важные для понимания работы динамо, можно непосредственно наблюдать. А аккреционные диски слишком малы для таких наблюдений. Об их строении приходится судить по косвенным признакам. Опыт картирования поверхности звезд показывает, что такое изучение возможно, но от возможности до реальности путь неблизкий.
Другая проблема заключается вот в чем: очевидно, что магнитное поле не падает на ту же туманность Андромеды из внешних источников – просто неоткуда. Для аккреционных дисков в двойных системах это совсем не так очевидно – на звездах двойной системы вполне могут быть свои магнитные поля. Это внешнее магнитное поле, разумеется, ничем не хуже того, которое производится механизмом динамо в самом диске. Задачами о падении и втягивании этого внешнего магнитного поля в аккреционный диск тоже занимаются специалисты, в частности в Челябинске. Но еще до конца не ясно, как сосуществуют оба этих источника магнитного поля в аккреционных дисках.
В общем, пространство для исследований широкое.
4. Начальное магнитное поле, космология и элементарные частицы
Динамо, строго говоря, не создает магнитное поле из ничего, оно лишь экспоненциально быстро усиливает начальное очень слабое магнитное поле.
Отвлекусь немного и поясню смысл ключевого слова предыдущей фразы – «экспоненциально». Когда на первом курсе мы учим студентов основам математического анализа, одна из наших основных задач состоит в том, чтобы они хорошо усвоили шкалу скоростей роста основных элементарных функций. И степенная функция, и логарифм, и показательная функция стремятся к бесконечности (конечно, если основание больше единицы). Но скорости этого роста качественно различаются. Как, по словам Гегеля, любил говаривать Гераклит Эфесский, «прекраснейшая из обезьян безобразна, если ее сравнить с родом человеческим». Философам виднее, а мне самому не приходилось сравнивать. Но идеям математического анализа эта мысль соответствует: чуть основание показательной функции перевалило за единицу – и она растет несоизмеримо быстрее степенной функции. В физике принято стандартизировать запись показательной функции и все их преобразовывать к единому виду с основанием в виде числа Эйлера e – так удобнее дифференцировать и интегрировать. Уклоняющихся от этого правила заводят в темный чулан и там запирают навсегда. Показательная функция с таким основанием и называется экспонентой.
Эта мысль принадлежит вовсе не мне. Рассказывают, как еще молодой, но уже знаменитый Ландау приехал в Ленинград и втолковывал юным ленинградским физикам, что задача теоретиков – выявлять экспоненциальный рост и не обращать внимания на мелочи в виде степеней. Потом юного Зельдовича послали проводить мэтра в кассу, где последнему выдали небольшой полагавшийся ему гонорар. Будущий академик и трижды герой труда застыл в изумлении: мэтр аккуратно пересчитал выданную ему мелочь. «Дау! – воскликнул Зельдович. – Вы же только что объясняли нам, что нужно пренебрегать мелочами. Зачем же вы считали мелочь – ясно же, то кассир не мог ошибиться в десять раз!» На что Ландау ответил фразой, ставшей со временем крылатой: «Деньги стоят в экспоненте!»
Читать дальше