Когда тектоническое движение плит приобретает устойчивый характер, часть погребенного в мантии СО 2начинает возвращаться в атмосферу через вулканические кратеры. Таким образом на сегодняшний день сложилось равновесие, когда большая часть СО 2заключена в коре и мантии. Если вы пересчитаете на углекислый газ белые скалы Дувра, экстраполируете результат на всю территорию земного шара, а также учтете все то, что, как считают ученые, растворено в мантии, у вас получится атмосфера СО 2с давлением порядка десяти бар, под которой Земля изнемогала бы от жары.
Представим, что мы можем осадить весь углекислый газ из атмосферы Венеры с помощью аналогичного процесса выветривания континентальных пород в глобальные океаны и образования карбонатов. Итогом окажется внешняя карбонатная кора толщиной 800 м [167]– светлая по оттенку поверхность, которая эффективно отражает в космос солнечные лучи. В итоге Венера может стать планетой, почти пригодной для жизни, с потрясающими, хотя и пугающе суровыми пейзажами. Вам понадобятся хорошие темные очки.
В настоящем и ближайшем будущем, здесь, на Земле, такое «терраформирование», как это ни грустно, уже не относится к области научной фантастики. Мы как вид приняли решение нарушить равновесие биогеосферной системы фиксации углерода. Последний раз, когда я проверял, бензин стоил меньше 80 центов за литр – такая дешевизна свидетельствует о безрассудном использовании ископаемого углерода, несмотря на общеизвестные теперь факты [168].
* * *
Для жизни в том виде, в каком она нам знакома, растворителем служит вода, но разнообразие живых организмов невероятно. Подробности туманны, но мы знаем, что жизнь на Земле началась с экстремофилов , которые прекрасно себя чувствовали в условиях позднего катархея. Среди них были галофилы, термофилы и барофилы – организмы, жившие в рассоле, возле гейзеров и на огромной глубине. Они не исчезли и сейчас – просто заняли свои особые ниши (вспомните наши рассуждения о глубинных, наполненных рассолом карманах на Марсе). Но любому из этих организмов – неважно, к каким экстремальным условиям они приспособлены, – на определенных этапах существования требуется вода. А как может обстоять дело в других местах?
Мозаика из 17 фотографий, сделанных во время пролета Ганимеда космическим зондом NASA «Вояджер-1» в 1979 г. На ней видны заполненные рифты, угловатые массивы, свежие отметины и несколько крупных кратеров, но никаких бассейнов, которые напоминали бы лунные. Под этой испещренной узорами поверхностью, под 100-километровым слоем льда находится жидкий соленый океан, переходящий в подстилающее основание изо льда VI, ниже которого лежат гидросиликаты, а еще ниже – каменистая мантия и плотное металлическое ядро.
NASA/JPL
Одно из самых очевидных мест, о которых нам следует подумать в этой связи, – это Ганимед, спутник Юпитера диаметром 5000 км, самое массивное покрытое льдом тело в Солнечной системе. Это самый большой из известных нам спутников, пока мы не обнаружим еще более крупные спутники, обращающиеся вокруг планет у других звезд. Глубоко внутри Ганимеда расположен океан, о котором мы знаем по замерам магнитного поля во время экспедиции космического зонда NASA «Галилео» (о ней мы поговорим ниже) и из того простого факта, что лед тает от тепла и давления. Глубина и протяженность океана на Ганимеде неизвестна. О его химических и минералогических характеристиках можно только строить предположения, а геологические процессы, происходящие под слоем льда, являются предметом одних лишь безосновательных догадок. Мы знаем, что океан покрыт сплошным ледяным панцирем толщиной от 50 до 100 км и что никакого взаимодействия между океаном и поверхностью не было с момента последнего крупного столкновения, которое произошло миллиарды лет назад. Доставить робота в толщу странных морей Ганимеда – куда более трудная задача, чем отправить автоматический зонд к ближайшей звезде, но, пока этого не случилось, ничто не мешает нам смотреть, думать и изучать.
Океан Ганимеда подогревается несколькими разными способами. Во-первых, это гравитационная энергия слияния, оставшаяся с момента образования спутника; ее было достаточно, чтобы полностью растопить это тело во время аккреции. Эта аккреция происходила относительно быстро, но для выхода наружу внутреннему теплу могут потребоваться сотни миллионов лет. Далее, тепло образуется в результате распада урана и других радиоактивных элементов, содержащихся в горных породах Ганимеда. Распад некоторых атомов происходит быстро, но среди них есть и долгоживущие изотопы калия, тория и урана, которые производят энергию миллиарды лет и вносят основной вклад во внутренний разогрев Ганимеда. Кроме того, существует приливный разогрев, который также играет значительную роль. Для некоторых планетных систем он очень устойчив и, вероятно, способен производить тепло хоть триллион лет.
Читать дальше
Конец ознакомительного отрывка
Купить книгу