* * *
Еще одним средиземноморским корифеем был Архимед из Сиракуз, живший в III в. до н. э., математик, физик и инженер, который много размышлял о бесконечности. Он знаменит изобретением устройства, названным впоследствии «архимедов винт», где огромный штопор вращается внутри цилиндра так, что благодаря его вращению вода поднимается вверх. (Архимед мог заимствовать идею этого приспособления у египтян; подобные устройства широко применялись в аграрных обществах.) Верный себе, он думал не об орошении полей; ученый решал проблему откачки воды из трюма построенного им роскошного военного корабля гигантского размера. Из-за своих не имевших аналогов в прошлом массы и водоизмещения «Сиракузия» дала течь, как только вышла в море.
Возможно на спор, Архимед однажды вызвался доказать, что число песчинок в мире не бесконечно. В восьмистраничном письме царю Сиракуз Гелону [120]ученый приводит краткое описание своего более подробного труда, ныне утраченного, в котором он нашел верхнюю границу количества песчинок, доказав, что их точно меньше этого предела. Это часто упоминаемое письмо получило название «Исчисление песчинок в пространстве, равном шару неподвижных звезд». Какой бы большой ни была Земля, она должна помещаться внутри Вселенной. Для определения размера Вселенной Архимед воспользовался работами Аристарха и пришел к выводу, что звезды находятся примерно в 10 млрд стадиев. Теперь он мог установить верхний предел количества песчинок, но существовала одна проблема – система исчисления для таких больших чисел еще не была изобретена!
Самым большим известным числом в те времена была мириада (10 000). В одном ведре песка уже содержится мириада мириад песчинок. Поэтому Архимеду пришлось придумать новый вид счета и изобрести экспоненциальное представление чисел, известное также и ученым доведической Древней Индии. Всегда найдется число, которое сколь угодно больше предыдущего: 100, 1000, 10 000… Экспоненциальная запись позволяет нам обозреть бесконечное, ограничить исчисляемое и охарактеризовать бесконечно малое.
Применение этого метода требует высокого уровня абстрактного мышления. Существа, неспособные на абстрактное мышление, воспринимают Вселенную в линейной последовательности – 1, 2, 3, 4, 5… Так мы считаем вещи и перемещаем свои тела сквозь пространство и время. Два километра, три километра. Восемь яблок. Девять яблок. Тиканье часов. (Хотя мы и измеряем время в экспоненциальных величинах – в секундах, минутах и часах, – однако свое движение сквозь него мы ощущаем, как линейное.)
Экспоненциальность порождает последовательности, которые неоднородны в пространстве и времени: два соседних числа в них разделяет постоянное соотношение , а не постоянная разница. В последовательности 1, 10, 100, 1000 каждый член – это десять в степени 0, 1, 2, 3 (количество нулей). Экспоненциальность – это революционное понятие, без которого не могла бы существовать современная количественная наука. Вы можете охватить самое маленькое квантовое расстояние (планковская длина, 1,6 × 10 –35м) и диаметр Вселенной (около 100 млрд световых лет, то есть 10 27м) всего 62 степенями десяти. Любой может сосчитать до 62.
Вооружившись этим новым способом работы с большими числами, Архимед приступил к своим расчетам. Насколько я могу судить, он возвел в куб свою оценку диаметра Вселенной, чтобы получить ее объем, и разделил его на объем песчинки [121], чтобы получить абсолютный верхний предел количества песчинок – 10 63. Заметьте, Архимед не считал песчинки, а просто показал, что они исчислимы. Он признавал, что это не значит, что их можно сосчитать: это совсем другое. Всех песчинок на всех пляжах мира всего лишь несколько квинтиллионов, то есть порядка 10 18. В одном году 32 млн секунд, так что, если пересчитывать по 10 песчинок в секунду, потребуется 10 млрд лет. Земля и Солнце к тому времени исчезнут. Вам понадобятся миллиарды высокоскоростных пескосчетных машин, чтобы закончить работу до вашей смерти. Песчинки, как звезды в небе, исчислимы только в принципе, но это не делает их число бесконечным. Является ли это различие чисто философским – или же оно имеет решающее значение?
В духе соображения, что микроскоп – это телескоп, развернутый задом наперед, Архимед обратил свои рассуждения в обратную сторону, чтобы поразмыслить о бесконечно малых. Он решил парадокс Зенона, выяснив, что только то, что среди слагаемых есть бесконечно малые величины, не означает, что их нельзя сложить. Ученый доказал, что 1/2 + 1/4 + 1/8 + … + 1/2 n + … = 1, поэтому Ахиллес догонит черепаху, а стрела попадет в дерево. Доказательства Архимеда были простыми и подкупали своей геометрической формой [122]. Разделив квадрат на более маленькие квадраты, он доказал, что 1/4 + 1/16 + 1/64 + … + 1/4 n + … = 1/3. Архимед вывел бесконечные ряды, которые дали лучшие на тот момент оценки числа π и кубического корня из 3 – оценки, лежащие в основе великих достижений техники, картографии и естественных наук. Только в эпоху Просвещения будут открыты более глубокие нюансы бесконечности, и в результате появится математический анализ, который значит для современной физики то же, что геометрия – для древних греков.
Читать дальше
Конец ознакомительного отрывка
Купить книгу