Если плотность Вселенной достаточно велика, гравитации звезд и галактик, возможно, хватит, чтобы противостоять пространственному расширению. Тогда звезды и галактики со временем схлопнутся в Большом сжатии, при котором температура взлетит до небес и уничтожит всю жизнь во Вселенной. (Некоторые физики даже предполагают, что после этого Вселенная, возможно, вновь вспыхнет в Большом взрыве, и все начнется сначала – получится этакая циклическая вселенная.)
Но в 1998 г. астрономы сделали поразительное заявление, перевернувшее многие из лелеемых нами преставлений и заставившее переписать учебники. Проанализировав далекие сверхновые по всей Вселенной, они обнаружили, что Вселенная не замедляется в своем расширении, как считалось ранее, а наоборот, ускоряется. Мало того, оказалось, что она входит в режим катастрофического разбегания.
Астрономам пришлось пересмотреть два существовавших прежде сценария, и появилась новая теория. Возможно, Вселенная умрет в процессе так называемого Большого разрыва, при котором ее расширение ускорится до потрясающего уровня. Она будет расширяться так быстро, что ночное небо станет совершенно черным (поскольку свет от соседних звезд не сможет достичь нас) и температура всего приблизится к абсолютному нулю.
При такой температуре жизнь существовать не может.
Движущей силой ускоряющегося расширения является, возможно, то, от чего уже однажды отказался Эйнштейн в 1920-е гг., – космологическая постоянная, энергия вакуума, которую теперь называют темной энергией. Удивительно, но количество темной энергии во Вселенной огромно. Более 68,3 % всей материи и энергии во Вселенной находится в этой загадочной форме. (Вместе темная энергия и темная материя составляют большую часть материи / энергии во Вселенной, но это две разные сущности и путать их друг с другом не следует.)
По иронии судьбы, ни одна из известных теорий не позволяет объяснить все это. Если попытаться просто подсчитать количество темной энергии во Вселенной (опираясь на постулаты теории относительности и квантовой теории), мы получим величину, которая в 10 120раз превосходит реальную! (10 120 – это единица со 120 нулями.)
Это, безусловно, самое масштабное расхождение между теорией и экспериментом в истории науки. Да и ставки в этой игре такие, что больше не бывает: на кону конечная судьба самой Вселенной.
Разобравшись в этой проблеме, мы узнаем, как умрет наша Вселенная.
Разыскивается гравитон
После нескольких десятилетий затишья в области исследований общей теории относительности недавнее применение к ней квантовой теории открыло перед учеными неожиданные горизонты, особенно сейчас, с появлением новых мощных инструментов. На наших глазах появляются все новые и новые направления исследований.
До сих пор мы говорили о применении квантовой механики только к материи, которая движется в гравитационных полях Эйнштейновой теории. Мы не касались гораздо более сложного вопроса – применения квантовой механики к самой гравитации в форме гравитонов.
Именно здесь мы сталкиваемся с величайшей проблемой – с поиском квантовой теории гравитации, десятилетиями ставившим в тупик величайших физиков мира. Прежде всего посмотрим, что нам удалось узнать к настоящему моменту. Мы помним, что при применении квантовой теории к свету было введено понятие фотона – частицы света. При движении фотон окружают электрическое и магнитное поля, которые колеблются, пронизывают пространство и подчиняются уравнениям Максвелла. Именно поэтому свет обладает как корпускулярными, так и волновыми свойствами. Мощь уравнений Максвелла заключается в их симметричности, то есть способности превращать электрическое поле в магнитное и наоборот – магнитное в электрическое.
При столкновении фотона с электронами уравнение, которое описывает это взаимодействие, выдает бесконечные результаты. Однако при помощи фокусов, придуманных Фейнманом, Швингером, Томонагой и другими, мы можем спрятать эти бесконечности. Родившаяся в результате этого теория получила название квантовой электродинамики. Затем мы применили этот метод к ядерному взаимодействию: заменили первоначальное поле Максвелла полем Янга – Миллса, а электрон заменили серией кварков, нейтрино и т. п. На следующем этапе мы применили новый набор фокусов, изобретенных 'тХоофтом и его коллегами, чтобы вновь устранить все расходимости.
Таким образом, три из четырех фундаментальных взаимодействий Вселенной удалось объединить в единую теорию – Стандартную модель элементарных частиц. Эта теория не особенно красива, поскольку собрана из симметрий сильного и слабого ядерных взаимодействий и электромагнитного взаимодействия. Так или иначе, она работала. Однако попытка применить этот опробованный на практике метод к гравитации приводит к проблемам.
Читать дальше
Конец ознакомительного отрывка
Купить книгу