Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную]

Здесь есть возможность читать онлайн «Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Альпина нон-фикшн, Жанр: Физика, Математика, sci_cosmos, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика космоса [Как современная наука расшифровывает Вселенную]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика космоса [Как современная наука расшифровывает Вселенную]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида.
«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.
Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».

Математика космоса [Как современная наука расшифровывает Вселенную] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика космоса [Как современная наука расшифровывает Вселенную]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим, мы используем миллион шариков. Чтобы определить состояние каждого шарика, требуется шесть чисел: три для координат в пространстве, еще три для компонент скорости. Это шесть миллионов чисел — только для того, чтобы определить состояние системы в произвольный момент. Мы хотим воспользоваться законами механики и гравитации, чтобы предсказать будущее движение системы. Эти законы представляют собой дифференциальные уравнения, определяющие состояние системы на крохотный шаг вперед, в будущее, при известном текущем состоянии. При маленьком шаге по времени — пусть это будет, скажем, секунда — результат получится очень близким к реальному состоянию системы в будущем. Так что теперь нам придется вычислить сумму для шести миллионов чисел. Точнее говоря, нам придется получить шесть миллионов сумм для шести миллионов чисел — по одному суммированию на каждое число, необходимое для описания будущего состояния. Так что сложность наших расчетов составит шесть миллионов, умноженные на шесть миллионов, а это 36 триллионов. И посчитав все это, мы узнаем лишь, каким будет следующее состояние, через секунду после нынешнего. Повторив расчет еще раз, мы узнаем, что произойдет через две секунды, и т. д. Чтобы выяснить, что произойдет через тысячу лет, нам нужно просчитать период примерно в 30 миллиардов секунд, и сложность расчетов при этом составит 30 миллиардов, умноженные на 26 триллионов — около 10↑ 24, или один септиллион.

И это еще не самое худшее. Хотя каждый отдельный шаг, возможно, является хорошей аппроксимацией, шагов так много, что даже самая крохотная ошибка может значительно вырасти; кроме того, объемные вычисления занимают много времени. Если бы компьютер мог рассчитывать один шаг в секунду, то есть работал бы «в реальном времени», на расчеты потребовалось бы не меньше тысячи лет. Только суперкомпьютер способен хотя бы приблизиться к таким параметрам вычислений. Единственный выход — найти другой, более хитрый способ проводить вычисления. На ранних этапах столкновения действительно может потребоваться короткий шаг по времени — скажем, одна секунда, — потому что возникнет страшная путаница и все будет очень сложно. Позже шаг по времени можно сделать более длинным, результат, вероятно, останется приемлемым. Более того, как только две точки разойдутся на достаточно большое расстояние, сила взаимодействия между ними станет настолько маленькой, что ею, скорее всего, можно вообще пренебречь. Наконец, именно здесь можно получить наибольший выигрыш — весь расчет можно упростить, организовав его более хитроумным способом.

При первых попытках моделирования вводились дополнительные упрощения. Вместо того чтобы проводить вычисления для трехмерного пространства, задачу сводили к двум измерениям, а для этого предполагали, что все происходит в плоскости орбиты Земли. В этом варианте сталкиваются два круглых, а не два шарообразных тела. Такое упрощение дает два преимущества. Шесть миллионов превращаются всего лишь в четыре миллиона (по четыре числа на один пушистый шарик). Еще лучше, что вам уже не нужно миллиона шариков; возможно, 10 000 будет достаточно. Теперь вместо шести миллионов у вас будет 40 000, а сложность снизится с 36 триллионов до 1,6 миллиарда.

Да, и еще одно…

Мало провести расчет один раз. Мы не знаем ни массы прилетевшего тела, ни его скорости, ни направления, с которого оно подлетает к Земле. Каждый вариант требует нового расчета. Именно это сильнее всего ограничивало исследователей в ранних попытках, поскольку компьютеры тогда считали намного медленнее. Время на суперкомпьютере тоже стоило дорого, так что исследовательских грантов хватало лишь на небольшое число прогонов. Вследствие этого исследователь должен был многое угадывать, причем с самого начала, на основании здравого смысла и простейших рассуждений, что называется, «на пальцах» (к примеру, «может ли это предположение дать нам верное значение результирующего момента импульса?»). После этого оставалось только надеяться.

Тем не менее пионеры моделирования сумели преодолеть все препятствия. Они сумели найти работающий сценарий. Более поздние работы его уточнили. Вопрос происхождения Луны был решен.

* * *

Или нет?

Моделирование теории ударного формирования Луны включает в себя две основные фазы: моделирование непосредственно столкновения и образования диска обломков и последующая аккреция части этого диска с образованием компактной глыбы, зародыша Луны. До 1996 года исследователи ограничивали свои расчеты первой фазой, а основным применяемым методом была гидродинамика сглаженных частиц. Робин Кануп и Эрик Асфауг в 2001 году констатировали, что этот метод «хорошо подходит для сильно деформируемых систем, развивающихся в пределах пустого по большей части пространства», а значит, это именно то, что нам нужно для этой части задачи.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика космоса [Как современная наука расшифровывает Вселенную]»

Представляем Вашему вниманию похожие книги на «Математика космоса [Как современная наука расшифровывает Вселенную]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Йэн Стюарт - Колесники
Йэн Стюарт
Отзывы о книге «Математика космоса [Как современная наука расшифровывает Вселенную]»

Обсуждение, отзывы о книге «Математика космоса [Как современная наука расшифровывает Вселенную]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x