В современной стандартной космологической модели (которая еще нуждается в непосредственном подтверждении) первичные флуктуации плотности связаны со стадией инфляции в ранней Вселенной. По своей природе они квантовые, флуктуирует само поле, отвечающее за инфляцию, – инфлатон. Экспоненциальное раздувание (очень быстрое расширение), которое происходит на стадии инфляции, усиливает вакуумные флуктуации всех полей. Пока колебания поля малы, они просто осциллируют, но, когда расширение растягивает их до масштабов горизонта, они «замерзают», застывают. Впоследствии они становятся зародышами флуктуаций плотности, из которых и начнет расти наблюдаемая сегодня структура Вселенной.
Теория инфляции предсказывает, что начальные возмущения должны быть максимально случайными (гауссовыми) и что у них нет выделенного масштаба. Именно это и подтверждается в настоящее время по данным наблюдений реликтового фона.
Первичные возмущения плотности возникают на стадии инфляции за счет квантовых флуктуаций.
Флуктуации плотности, «замерзшие» на разных стадиях, имеют различный масштаб. Из-за расширения Вселенной этот масштаб растягивается, но это происходит медленнее, чем растет возраст (масштабный фактор растет как корень из возраста на радиационно-доминированной стадии и как возраст в степени 2/3 на стадии доминирования вещества). А размер горизонта линейно зависит от времени (растет как время в первой степени). Поэтому постепенно флуктуации, имеющие размер больше горизонта (такие флуктуации уже не растут), оказываются внутри горизонта, и может начаться их дальнейший рост.
Кроме так называемых скалярных флуктуаций, приводящих в итоге к неоднородности распределения плотности вещества, на стадии инфляции возникают и тензорные флуктуации. Когда они оказываются под горизонтом, то могут наблюдаться как первичные гравитационные волны. Есть надежда обнаружить их существование, изучая особые неоднородности в распределении поляризации реликтового излучения.
Астрономия – наблюдательная наука. Прямой эксперимент в ней невозможен (за редкими случаями изучения тел Солнечной системы). Поэтому практически вся информация в астрономии основана на наблюдениях. Для этого необходимы приборы, которые помогали бы наблюдать слабые объекты и мелкие детали, невидимые невооруженным глазом, а также позволяли бы фиксировать данные для дальнейшего анализа.
Современная астрономия располагает инструментами для наблюдений во всех диапазонах электромагнитного спектра, а также детекторами нейтрино, космических лучей и гравитационных волн. Постоянное совершенствование средств наблюдения, рост их размеров, чувствительности и возможностей позволяют делать все новые и новые открытия, помогающие лучше понять устройство Вселенной.
13.1. Принцип работы телескопа
Телескоп имеет две основные задачи: собрать как можно больше излучения и дать возможность рассмотреть более мелкие детали. Это относится к инструментам, работающим в разных диапазонах спектра (а также с поправками на особенности не только к телескопам, но и к другим типам наблюдательных инструментов в астрономии). Разумеется, многие детали и принципы работы радиотелескопов существенно отличаются от таковых для гамма-обсерваторий, поэтому различия будут рассмотрены отдельно. Однако многие общие положения верны для широкого диапазона электромагнитных волн, и их удобно рассмотреть на примере оптических телескопов.
У телескопа имеются две основные задачи: собрать больше света и рассмотреть более мелкие детали.
Невооруженным глазом на всем небе можно увидеть около 6000 звезд (из сотен миллиардов) нашей Галактики, всего лишь три галактики (туманность Андромеды, Большое и Малое Магеллановы Облака) и пять планет, да и то в идеальных условиях (скажем, в космосе, вдали от крупных тел, где нет влияния атмосферы и для обзора доступна вся небесная сфера). Другие звезды, галактики и планеты слишком слабы для того, чтобы наши глаза смогли рассмотреть их. Интенсивность потока света от источника падает обратно пропорционально квадрату пройденного расстояния, и от далеких объектов в наш зрачок попадает слишком мало фотонов, чтобы сетчатка смогла их отчетливо зафиксировать. Значит, необходим прибор для сбора фотонов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу