Измерения позволяют определить, как менялась температура реликта начиная с первых миллиардов лет.
Второй метод связан с эффектом Сюняева – Зельдовича. Фотоны реликтового излучения рассеиваются на электронах в горячем газе, находящемся в скоплениях галактик, и отбирают энергию у электронов (обратный эффект Комптона). В итоге в направлении на скопление будет наблюдаться небольшой, но вполне измеримый недостаток фотонов реликта с длиной волны более 2 мм и избыток фотонов с более короткими волнами. Поскольку мы можем определить свойства скопления, единственным неизвестным будет начальная температура поля фотонов, т. е. температура реликтового излучения, попадающего в скопления. Анализ позволяет определить ее с достаточной точностью, а сравнение данных измерений с предсказаниями теории показывает, что они находятся в согласии. Температура реликтового излучения растет в прошлое как T ~ (1 + z), и это является еще одним независимым аргументом в пользу современной модели расширяющейся Вселенной.
12.4. Спектр первичных возмущений
Со времен Ньютона мы знаем, что если в распределенном по пространству веществе есть отдельные сгущения, то со временем из-за действия гравитации они могут начать расти (т. е. уплотняться, сжиматься). В результате постепенно возникает эволюционирующая структура в распределении вещества. Подобный сценарий реализовался в молодой Вселенной. Начальные флуктуации плотности, если они были достаточно велики, с определенного момента стали увеличиваться. В итоге мы видим галактики, скопления галактик, сверхскопления, волокна и войды – крупномасштабную структуру Вселенной и ее отдельные элементы.
При этом статистические свойства (как говорят, спектр) первичных флуктуаций можно установить, изучая данные по анизотропии реликтового излучения.
Сами флуктуации плотности определяются поведением темного вещества. Основная причина этого в том, что количество темного вещества в несколько раз больше, чем барионного (этот фактор является определяющим начиная с эпохи рекомбинации). Но в более раннюю эпоху была еще одна причина: дело в том, что неоднородности в распределении темного вещества начинают расти рано, а обычное барионное вещество до рекомбинации связано с фотонами, и поэтому (до определенного момента) неоднородности в распределении барионов расти не могут.
Для образования структуры во Вселенной необходимы первичные неоднородности плотности.
Когда барионы начинают «натекать» в созданные темным веществом потенциальные ямы, туда попадают и фотоны. Но рост плотности барионов в какой-то момент останавливается из-за давления фотонов, начинается расширение этой области. Происходят акустические осцилляции в барионном веществе. Фотоны, попавшие в потенциальные ямы, выходя из них, «покраснеют» (станут более «холодными»). Кроме того, работает эффект Доплера: если излучающее вещество движется в нашу сторону, то фотоны получат сдвиг в синюю сторону спектра (если от нас – то в красную). Наконец, рост плотности барионов соответствует и росту плотности фотонов, что приведет к эффективному повышению температуры в этой области. Соответственно, в результате сложения трех эффектов возникают сложные флуктуации температуры реликтовых фотонов.
Фотонные флуктуации мы можем обнаруживать на угловых масштабах менее одного градуса, исследуя микроволновое реликтовое излучение. Самая мощная деталь, так называемый доплеровский пик, в спектре мощности реликтового излучения соответствует угловому размеру чуть менее градуса. Это размер звукового горизонта на момент рекомбинации – более крупные области не успевают совершить ни одного полуколебания. На меньших масштабах видны более слабые детали, называемые акустическими пиками, они связаны с акустическими осцилляциями в барионном веществе в эпоху рекомбинации.
Первичные неоднородности в распределении плотности вещества можно изучать по их следам в реликтовом фоне.
Наблюдения показывают, что неоднородности температуры по отношению к ее среднему значению составляют примерно 0,00001, это соответствует уровню флуктуаций плотности на момент рекомбинации. Высота акустических пиков в спектре мощности реликтового излучения сильно зависит от доли барионов в полной плотности, а положение пиков – от кривизны пространства. Наблюдения позволяют определить, что наша Вселенная с высокой (меньше 1 %) степенью точности описывается евклидовой геометрией, а доля барионов в полной плотности составляет 4–5 %.
Читать дальше
Конец ознакомительного отрывка
Купить книгу