Однако сразу же возникла еще одна проблема. Распад нейтрона – результат того, что позже стало известно как слабое взаимодействие, и сила, отвечающая за него, слаба. При подстановке величин для возможной силы, которая могла бы возникнуть между протонами и нейтронами при обмене парой электрон – нейтрино, становилось ясно, что эта сила получилась бы слишком слабой, чтобы их связывать.
Тогда Юкава позволил себе то, что не позволял никто из остальных. Он задал себе вопрос: почему ядерная сила, если она, подобно тому как это имеет место в КЭД, возникает в результате обмена виртуальными частицами, должна основываться непременно на обмене одной или несколькими частицами, существование которых физикам известно или по крайней мере предполагается? Помня, как не любили тогда физики – взять хотя бы Дирака или Паули – предлагать новые частицы, даже если для того были все основания, вы сможете, наверное, оценить, насколько радикальной была идея Юкавы. Позже Юкава описывал это так:
В тот период атомное ядро представляло собой воплощенное противоречие и совершенно не поддавалось объяснениям. А почему? Потому, что наша концепция элементарной частицы была слишком узкой. В японском языке такого слова вообще не было, и мы пользовались английским словом, а означало оно протон и электрон. Казалось, откуда-то было принято Божественное послание, запрещающее нам думать о каких бы то ни было других частицах. Думать о чем-то вне этих рамок (за исключением фотона) значило проявлять наглость и отсутствие страха Божия. А дело было в том, что концепция вечности материи была традиционной и брала начало со времен Демокрита и Эпикура. Размышления о возникновении частиц, если это не фотоны, казались подозрительными, и в отношении таких мыслей существовал сильный, почти подсознательный, запрет.
Один из хороших моих приятелей-физиков говорит, что единственными периодами, когда ему удавалось провести сложные вычисления, были периоды после рождения каждого из его детей, когда спать он так и так был не в состоянии, так что проще было встать и поработать. Так в октябре 1934 г., будучи не в состоянии заснуть вскоре после рождения второго ребенка, Юкава вдруг понял, что если расстояние, на котором работает сильное ядерное взаимодействие, должно быть ограничено размером ядра, то любая частица, участвующая при этом в обмене, должна быть намного тяжелее электрона. На следующее утро он оценил массу такой частицы примерно в двести масс электрона. При этом частица, если ею должны обмениваться нейтроны с протонами, непременно должна обладать электрическим зарядом, но не может иметь спина, чтобы спин протона или нейтрона при ее поглощении или высвобождении не менялся бы.
Вы можете спросить, какое отношение все эти тревоги по поводу сильного ядерного взаимодействия имеют к распаду нейтрона – теме, которой началась эта глава и закончилась предыдущая? В 1930-е гг. не только размышления о новых частицах раздражали и вызывали внутренний протест, но и придумывание новых сил казалось занятием в лучшем случае ненужным, а в худшем случае – еретическим. Физики были убеждены, что все процессы, происходящие в ядре, сильные или слабые, должны быть связаны между собой.
Юкава придумал хитроумный способ добиться этого, соединив идеи Ферми и Гейзенберга, а также обобщив идеи успешной квантовой теории электромагнетизма. Если вместо того, чтобы испускать фотон, нейтроны в ядре испускают новую частицу – тяжелую заряженную частицу без спина, которую Юкава первоначально назвал мезотроном, но затем Гейзенберг поправил его греческий и название было сокращено до мезона, – то эту частицу могут поглощать протоны ядра, порождая при этом силу притяжения, величину которой Юкава смог рассчитать при помощи уравнений, экстраполированных им, как вы уже догадались, из теории электромагнетизма.
Однако аналогия с электромагнетизмом не могла быть полной, поскольку мезон массивен, а фотон массы не имеет. Юкава поступил так же, как мог бы поступить Ферми, если бы ему пришла в голову такая идея. Да, теория неполна, но Юкава готов был игнорировать остальные аспекты электромагнетизма, которые его теория воспроизвести не могла. Плевать на торпеды, полный вперед!
Юкава изобретательно – и, как выяснилось в конечном итоге, неверно – связал сильное взаимодействие с наблюдаемым нейтронным распадом, предположив, что мезоны, возможно, не всегда служат просто объектом обмена между нейтронами и протонами в ядре. Небольшая доля мезонов, испущенных нейтронами, по пути, прежде чем поглотиться, возможно, распадается на электрон и нейтрино, что приводит к распаду нейтрона. В этом случае нейтронный распад будет изображаться не так, как на рисунке слева, где и его исчезновение, и образование других частиц происходят в одной точке, а будет выглядеть скорее как на рисунке справа, где распад, можно сказать, размазывается в пространстве и новая частица (мезон Юкавы), показанная пунктирной линией, проходит небольшое расстояние, прежде чем распасться на электрон и нейтрино. С этой новой частицей-посредником слабое взаимодействие, обеспечивающее распад нейтрона, начинает больше походить на электромагнитное взаимодействие между заряженными частицами.
Читать дальше
Конец ознакомительного отрывка
Купить книгу