Дать исследованиям в этом направлении следующий толчок выпало на долю физика Джеймса Чедвика. Чедвик, очевидно, обладал великолепным физическим чутьем, но его политическое чутье оставляло желать лучшего. Окончив в 1913 г. Манчестерский университет со степенью магистра и работая затем с Резерфордом, он получил стипендию, позволявшую ему учиться где угодно. Чедвик отправился в Берлин работать с Гейгером. Он не мог бы выбрать себе лучшего наставника и вскоре уже проводил важные исследования в области радиоактивного распада. К несчастью, во время пребывания Чедвика в Германии вспыхнула Первая мировая война, и следующие четыре года молодой ученый провел в лагере для интернированных.
В конечном итоге он вернулся в Кембридж, куда к тому времени перебрался и Резерфорд, и завершил работу над докторской диссертацией под его руководством. После этого Чедвик остался в Кембридже, чтобы работать с Резерфордом и помогать ему руководить Кавендишской лабораторией. Чедвик не просто знал о результатах Боте и Беккера, он сам воспроизвел их, но лишь после того, как один из студентов сообщил ему о результатах Жолио-Кюри, Чедвик убедился на основании уже приведенного мной довода об энергии, что излучение, о котором идет речь, попросту должно состоять из неизвестных прежде нейтральных частиц с массой, сравнимой с массой протона, и что эти частицы могут «обитать» в атомном ядре (идея, которую они с Резерфордом вынашивали не один год).
Чедвик воспроизвел и расширил эксперименты Жолио-Кюри; он подвергал бомбардировке не только парафин, но и другие мишени и исследовал вылетающие протоны. Чедвик подтвердил не только тот факт, что с учетом энергетики столкновения источником загадочного излучения просто не могут быть гамма-лучи, но и то, что сила взаимодействия этих новых частиц с ядром намного превышает ту, что можно было бы предсказать для гамма-лучей.
Чедвик не был бездельником. Уже через две недели после начала экспериментов в 1932 г. он прислал в Nature письмо под названием «О возможном существовании нейтрона», а вслед за этим направил в Королевское общество более подробную статью. Так был открыт нейтрон, составляющий, как мы сегодня знаем, бóльшую часть массы тяжелых ядер и, таким образом, бóльшую часть массы нашего тела.
За это открытие через три года, в 1935 г., Чедвик был удостоен Нобелевской премии по физике. Есть какая-то поэтическая справедливость в том, что трое ученых, эксперименты которых сделали возможными результат Чедвика, но которые сами упустили шанс распознать нейтрон, также были удостоены Нобелевской премии за другие труды. Боте получил Нобелевскую премию в 1954 г. за работу по использованию совпадений наблюдаемых событий в разных детекторах для исследования детальной природы ядерных и атомных явлений. Ирен и Фредерик Жолио-Кюри, упустившие аж два других открытия, которые могли бы принести им Нобелевку, получили премию по химии в 1935 г. за открытие искусственной радиоактивности, которая позже стала важной составной частью разработки как ядерной энергетики, так и ядерного оружия. Интересно, что только после получения Нобелевской премии Ирен во Франции смогла стать профессором. С учетом двух Нобелевских премий ее матери Марии семья Кюри добыла целых пять премий – больше, чем удавалось когда-либо получить членам одной семьи.
После этого открытия Чедвик задался целью измерить массу нейтрона. Его первая оценка, полученная в 1933 г., предполагала массу чуть меньшую, чем сумма масс протона и электрона. Это подкрепляло гипотезу о том, что нейтрон, возможно, представляет собой связанное состояние этих двух частиц, а разница масс, по формуле Эйнштейна E = mc 2, соответствует потере энергии при связывании. Однако через год после еще нескольких попыток, предпринятых другими научными группами и давших противоречивые результаты, Чедвик еще раз проанализировал ситуацию с использованием ядерной реакции, инициируемой гамма-лучами, что позволяло измерять все энергии с большой точностью, и получил результат, с определенностью указывавший на то, что нейтрон тяжелее суммы масс протона и электрона, хотя и очень близок к ней; разница масс не превышает 0,1 %.
Говорят, что «близок» важно только при бросании подковы [8] Имеется в виду популярная в Америке игра по набрасыванию подков на стержень, в которой попадание в шести дюймах от цели приносит игроку 1 очко. – Прим. науч. ред.
или гранаты, но в данном случае близость масс между протоном и нейтроном значила очень много. Это одна из главных причин нашего сегодняшнего существования.
Читать дальше
Конец ознакомительного отрывка
Купить книгу