Оба эксперимента были запущены около 1982–1983 гг. Великое объединение казалось столь убедительным, что физическое сообщество уверенно ожидало вскоре получить сигнал; Великое объединение достойно увенчало бы собой десятилетие поразительных перемен и открытий в физике элементарных частиц, не говоря уже о Нобелевке для Глэшоу и, возможно, еще для кого-нибудь.
К сожалению, на этот раз природа не была к нам столь добра. Никаких сигналов не было получено ни за первый год, ни за второй, ни за третий. От простейшей элегантной модели, предложенной Глэшоу и Джорджи, скоро пришлось отказаться. Но, однажды заразившись идеей Великого объединения, от нее нелегко избавиться. Выдвигались всё новые предположения, новые теории, в которых распад протона мог подавляться до такой степени, чтобы стать незаметным в проводимых экспериментах.
23 февраля 1987 г., однако, произошло новое событие, подтвердившее максиму, которую я считаю почти универсальной: всякий раз, когда мы открываем новое окно во Вселенную, нас ждет сюрприз. В тот день группа астрономов заметила на фотопластинках, отснятых за ночь, взорвавшуюся сверхновую звезду – самую близкую к нам за почти четыреста лет. Звезда эта находится от нас на расстоянии около 160 000 световых лет в Большом Магеллановом Облаке – карликовой галактике, спутнике Млечного Пути, которую можно увидеть в Южном полушарии.
Если наши представления о взрывающихся звездах верны, то большая часть энергии там должна была высвобождаться в виде нейтрино, хотя и видимый свет от взрыва настолько силен, что сверхновые при взрыве (примерно раз в сто лет в одной галактике) становятся ярчайшими небесными объектами. Грубые прикидки тогда показывали, что громадные водяные детекторы IMB (Ирвин – Мичиган – Брукхейвен) и «Камиоканде» должны увидеть примерно по двадцать нейтринных событий. Когда экспериментаторы IMB и «Камиоканде» заново пересмотрели свои данные за тот день, обнаружилось – гляди-ка! – что IMB зарегистрировал восемь событий, которые можно было считать подходящими кандидатами, в пределах десятисекундного интервала, а «Камиоканде» – одиннадцать. В мире нейтринной физики это можно было считать настоящим водопадом данных. Нейтринная астрофизика внезапно достигла зрелости. Эти девятнадцать событий породили, наверное, не менее девятнадцати сотен статей таких физиков, как я, которые поняли, что им открылось беспрецедентное окно в ядро взрывающейся звезды и в этой лаборатории можно изучать не только астрофизику, но и физику самих нейтрино.
Под влиянием идеи о том, что большие детекторы протонного распада могут выступать также в роли астрофизических нейтринных детекторов, несколько групп физиков начали строительство нового поколения таких двухцелевых детекторов. Крупнейший из них был вновь построен в шахте Камиока; он получил название «Супер-Камиоканде», и не случайно. Этот громадный пятидесятитысячетонный резервуар воды, окруженный 11 146 фотоумножителями, функционировал в действующей шахте, и при этом в эксперименте поддерживались условия лабораторной чистоты. Это было абсолютно необходимо, потому что в детекторе таких размеров приходится заботиться об устранении не только внешних космических лучей, но и внутренних радиоактивных загрязнителей в воде, способных похоронить под лавиной информации любые нужные сигналы.
Тем временем интерес к родственным астрофизическим нейтринным сигналам в этот период тоже достиг новых высот. Солнце порождает нейтрино в ходе ядерных реакций в ядре, питающих его энергией; за двадцать с лишним лет при помощи громадного подземного детектора Рей Дэвис сумел обнаружить солнечные нейтрино, но частота событий при этом была примерно втрое ниже той, что предсказывалась лучшими моделями Солнца. Теперь в глубокой шахте в Садбери (Канада) был построен детектор солнечных нейтрино нового типа, получивший известность как Нейтринная обсерватория Садбери – SNO.
«Супер-Камиоканде» с различными доработками почти постоянно работает более двадцати лет. За это время не были обнаружены ни сигналы протонного распада, ни сигналы от других вспышек сверхновых. Однако высокоточные наблюдения нейтрино на этом громадном детекторе, дополненные наблюдениями на SNO, с определенностью установили, что дефицит солнечных нейтрино, обнаруженный Реем Дэвисом, реален и, более того, объясняется не какими-то астрофизическими эффектами на Солнце, но свойствами самих нейтрино. По крайней мере один из трех известных типов нейтрино не полностью лишен массы, хотя его масса очень мала, возможно в сто миллионов раз меньше массы электрона – следующей по легкости частицы в природе. А поскольку Стандартная модель не предусматривает масс для нейтрино, это стало первым определенным указанием на то, что в природе действует какая-то неизвестная пока физика, выходящая за пределы Стандартной модели и хиггсовского поля.
Читать дальше
Конец ознакомительного отрывка
Купить книгу