Это означает, что физики, работающие в области исследований Солнца, намерены как можно тщательнее изучить корону, однако ее очень тонкую натуру затмевает блеск нижележащих слоев.
Раньше нужно было ждать полного солнечного затмения, когда Луна создавала благоприятные для наблюдений условия, закрыв остальную часть Солнца. Но в настоящее время в нашем распоряжении появились современные телескопы для исследования околосолнечного пространства, оборудованные коронографами – специальными дисками, блокирующими Солнце и создающими искусственное затмение, чтобы астрономы имели возможность регулярно исследовать солнечную корону.
Эти глаза, направленные на Солнце, фиксируют не только видимый свет. Они чувствительны и к другим частям электромагнитного спектра, включая ультрафиолетовый и рентгеновский спектры. Такие наблюдения позволили обнаружить корональные дыры – темные околополюсные области, которые почти не излучают радиацию. Возникнув, эти области продолжают существовать месяцами и являются источником высокоскоростных солнечных ветров.
Магнитные поля и дифференциальная ротация
Солнце – это далеко не неизменный желтый шар, появляющийся на нашем небосводе. Напротив, это невероятно динамичное и стремительно меняющееся небесное тело с бурлящей поверхностью и постоянно меняющимися очертаниями, сформированное под воздействием интенсивной магнитной активности.
Солнце – это гигантский магнит. Вы наверняка помните из школы тот заезженный эксперимент с магнитным бруском и железными опилками. Опилки выстраивались ровными рядами вдоль линий невидимого магнитного поля, пролегающих между его северным и южным полюсами. И у Солнца, и у Земли имеются аналогичные магнитные поля, пролегающие от одного полюса до другого. Наше магнитное поле закономерно сходно с полем магнитного бруска, потому что Земля вращается как единое твердое тело. Однако Солнце представляет собой вихрящийся колыхающийся шар, состоящий из чрезвычайно перегретого газа под названием плазма. Не являясь единым цельным телом, Солнце на экваторе вращается на 20 % быстрее, чем на полюсах. Астрономы называют это явление дифференциальным вращением, или ротацией.
В итоге магнитное поле на экваторе растягивается быстрее, чем на полюсах. Это приводит к тому, что общее магнитное поле Солнца становится значительно более сложным из-за того, что оно скручивается и запутывается. Во многом так же, как и в скрученной пружине или резиновом поясе, в результате этого процесса происходит накопление энергии вдоль магнитных линий. Мы наблюдаем высвобождение этой скрытой энергии в форме специфических проявлений и извержений на поверхности Солнца.
Солнечные пятна – одни из самых заметных и очевидных явлений на поверхности Солнца – затемнения, часто появляющиеся группами. Первым эти пятна еще в начале XVII века заметил Галилей, наблюдавший за небом в телескоп, но сообщения о солнечных пятнах, видимых невооруженным глазом, появлялись на протяжении более двух тысяч последних лет. И это вполне вероятно, поскольку некоторые солнечные пятна вырастают до размеров, равных более чем 10 % от общего диаметра солнечного диска – или до 160 тысяч километров. Это в 12,5 раза шире, чем диаметр земного шара. Солнечные пятна, как правило, существуют от нескольких дней до нескольких недель, однако некоторые из наиболее устойчивых долгожителей остаются на поверхности Солнца месяцами.
В течение многих лет объяснения происхождения этих пятен варьировались от предположений, что они вызваны штормами в солнечной атмосфере, до подозрений в том, что это синяки или кровоподтеки, за которые ответственны кометы камикадзе. Средняя температура фотосферы равна приблизительно 5,5 тысяч градусов по Цельсию, тогда как температура на солнечных пятнах в большинстве случаев варьируется от 3 тысяч до 4 тысяч градусов по Цельсию. Мощные локальные магнитные поля в районе локализации солнечных пятен по возможности препятствуют подъему тепла вверх из нижележащей конвекционной зоны. Именно поэтому солнечные пятна часто появляются парами – по одному на каждый полюс.
Еще со времен Галилея астрономы постоянно и подробно фиксировали количество солнечных пятен. Была установлена четкая модель изменения их числа – их количество достигало максимума ровно через каждые одиннадцать лет, после чего они постепенно исчезали и затем появлялись вновь.
Читать дальше