После нескольких сотен отражений свет, разумеется, должен выйти из своей временной «тюрьмы». Если зеркало в ближнем конце плеча отражает 97 % падающего света, остальные 3 % проходят сквозь зеркало и выходят по другую его сторону. Иначе говоря, каждый фотон света будет отражен в среднем 300 раз, прежде чем выйдет на свободу. (Наша световая тюрьма протяженностью 4 км называется резонатором Фабри – Перо.)
Освободившийся свет должен оставаться когерентным пучком лазерного излучения, иначе он не сможет интерферировать с пучком, выходящим из другого плеча. Для этого свет, пока он переотражается между двумя зеркалами, должен оставаться в фазе с самим собой. Достичь этого можно единственным способом – обеспечить такую длину пути туда и обратно между зеркалами, чтобы в нее укладывалось целое число волн данной длины. Речь идет о точности до пикометра (1 пм равен 10 –12м, или одной миллиардной доле миллиметра). Любое отклонение нарушит итоговую картину интерференционных полос. Как говорят ученые, работающие в LIGO, плечо интерферометра должно быть заперто.
Для этого используется хитроумный механизм обратной связи. Пока путь света в обе стороны между зеркалами остается равным целому числу длин волны, фотодетектор в темном порте интерферометра ничего не регистрирует. Но если длина плеча меняется из-за какой-либо внешней вибрации, некоторое количество света попадает в детектор. Как только это происходит, на контроллер концевого зеркала в плече подается сигнал. Электрический ток течет через катушку, создавая магнитное поле. Маленькие магниты на ободе концевого зеркала подвергаются действию силы притяжения или отталкивания. Кроме магнитов, в LIGO стоят электростатические толкатели, использующие ту же силу, которая притягивает полоски бумаги к расческе с электростатическим зарядом. Благодаря этому зеркало можно немного двигать назад и вперед – достаточно, чтобы восстановить запирание плеча.
Проходящая гравитационная волна также нарушит первоначальную интерференционную структуру в силу возникающих отклонений времени прихода света. Фотодетектор начнет регистрировать свет. Сработает механизм обратной связи, изменив текущий через катушку электрический ток и силу магнитного поля. В результате зеркала сдвинутся так, чтобы восстановить идеальную ослабляющую интерференцию в темном порте.
Если вы будете постоянно считывать изменения электрического тока, проходящего через катушку, то получите отчетливую картину крохотных вынужденных движений зеркала. Большинство этих восстанавливающих запирание плеча движений обусловливаются внешними вибрациями («шумом»), но некоторые могут быть вызваны искомыми волнами Эйнштейна.
Временно задерживая свет лазера в интерферометре при помощи двух зеркал, получаем дополнительное преимущество – накопление энергии в двух плечах. Благодаря этому свет в резонаторе Фабри – Перо представляет собой намного более мощный и равномерный поток фотонов, чем свет, минующий резонатор. Это важно, если требуется измерить чрезвычайно малые изменения выходного сигнала, как в нашем случае.
Чтобы понять, почему чем больше фотонов, тем точнее измерения, представьте, что хотите с точностью определить, насколько сильный ливень идет в Луизиане во время летней грозы. Вы находитесь в хижине с железной крышей, и все, что у вас есть, – это старомодный измеритель интенсивности шума, в котором игла двигается по дуге. Вы решаете использовать звук капель, барабанящих по крыше, в качестве показателя силы дождя. При слабом дожде вы услышите «кап… кап-кап… кап». Будет очень трудно определить, насколько шумным является дождь, и игла шумомера бешено мечется туда-сюда. Этот эффект называется дробовым шумом. Но вот гроза усиливается, дождь становится проливным. Игла движется по шкале и останавливается на определенном значении, которое может быть считано с высокой точностью. Вот почему нам нужно много света – большое количество фотонных «дождевых капель», чтобы знать, насколько именно меняется уровень освещенности при смещении зеркал.
Итак, мы создали практически идеальный интерферометр. Он имеет виртуальные плечи почти в 1200 км длиной, позволяющие регистрировать чрезвычайно малые изменения времени перемещения света. В случае этих изменений темный порт перестает быть совершенно темным. Какое-то количество света попадает на фотодетектор. Накачивая мощность лазера в двух плечах интерферометра, мы в значительной мере устранили дробовой шум. Теперь даже ничтожные изменения количества света из-за прохождения волны Эйнштейна выделяются на фоне остаточного шума.
Читать дальше