В 1991 году в Гран Сассо в Итальянских Альпах был дан старт второму проекту со схожей методикой (итало-немецкий эксперимент GALLEX , 30 тонн галлия). Предварительные результаты оказались следующими: SAGE – 73 SNU, GALLEX – 79 SNU . Но теория предсказывала 122–132 SNU !
Исследования продолжались. В шахте Камиока (Японские Альпы) на глубине 1000 метров был размещен водный детектор Камиоканде-II. Идея эксперимента на этот раз сводилась к использованию 680 тонн воды в качестве рабочего вещества. Согласно теории, нейтрино иногда должны взаимодействовать с электронами атомов в молекулах воды. В результате рассеяния отдельных частиц в недрах детектора в полной темноте должны возникать вспышки света так называемого черенковского излучения . В стенках резервуара были размещены чувствительные фотоумножители. Первые измерения показали: схема работает, нейтрино фиксируются – но их поток снова оказывался вдвое меньше, чем предсказывала теория!
Модернизированный эксперимент «Супер-Камиоканде» позволил не только фиксировать отдельные взаимодействия нейтрино с веществом детектора, но даже впервые построить размытое «нейтринное» изображение Солнца. Поток нейтрино от Солнца уверенно регистрировался во всех экспериментах. Это означало, что термоядерные реакции в недрах Солнца, безусловно, идут! Но проблема оставалась серьезной: количество нейтрино было меньше, чем предсказывала теория. При этом в разных экспериментах расхождения с расчетами были различными (в два, три, четыре раза).
Конечно, разные установки фиксировали немного разные нейтрино – частицы с различными энергиями. Конечно, всегда оставалось сомнение, насколько корректно проведена обработка данных, насколько правильно работает установка, насколько учтены все инструментальные эффекты, – эксперимент был немыслимо сложным! Методика совершенствовалась, расхождения постепенно уменьшались, но оставались значимыми.
Исследователи постепенно склонялись к мысли, что дело не в погрешностях теории ядерного синтеза на Солнце, а в недостатках наших представлений о том, что такое сами нейтрино!
И действительно, низкая способность нейтрино к взаимодействию с веществом существенно осложняла, осложняет и будет осложнять исследование этих частиц. Некоторые основные свойства нейтрино были вообще неизвестны. Например, согласно первоначальным вариантам теории, нейтрино вообще не обладают массой, и в этом смысле они казались похожими на частицы света – фотоны – и должны передвигаться со скоростью света. Постепенно накапливались основания для подозрений, что масса у нейтрино все-таки есть, но очень маленькая, существенно меньше, чем, например, у электрона. Но тогда теория допускала, что могут существовать нейтрино нескольких «сортов»!
Более того, в соответствии с теорией представлялись возможными превращения нейтрино одного сорта в нейтрино других сортов (так называемые осцилляции нейтрино). Эта идея впервые была высказана в 1968 году все тем же Бруно Понтекорво. Один из сортов частиц (так называемые правополяризованные, или стерильные нейтрино ) вообще не должны взаимодействовать с веществом! Если предположить, что в процессе движения от центра Солнца до земного детектора часть нейтрино претерпевает осцилляции (превращается, например, в стерильные), то вполне естественно, что количество регистрируемых частиц должно уменьшиться.
Позднее теоретические исследования показали, что если осцилляции нейтрино действительно существуют, то они должны усиливаться при прохождении сквозь вещество (эффект Михеева – Смирнова – Вольфенштейна). При этом, если в потоке появятся так называемые μ-нейтрино и τ-нейтрино, которые должны взаимодействовать с веществом слабее, чем рассматривавшиеся ранее в расчетах электронные нейтрино, то число регистрируемых частиц должно также уменьшиться!
Нужен был контрольный эксперимент.
Открытие было сделано в первом году нового, третьего тысячелетия. Канадская нейтринная обсерватория в Садбери ( SNO ) поставила точку в долгом споре о проблеме солнечных нейтрино.
Установка SNO – это гигантский резервуар, содержащий 1000 тонн сверхчистой тяжелой воды (вместо двух атомов водорода в молекуле воды присутствуют два атома тяжелого водорода – дейтерия). В установке работают 9456 фотоумножителей, которые фиксируют черенковское излучение от взаимодействия энергичных нейтрино с атомами дейтерия. При этом впервые можно разделить следствия от взаимодействия с различными сортами нейтрино.
Читать дальше
Конец ознакомительного отрывка
Купить книгу