Таким образом, мы видим, что концентрации различных типов атомов различаются на Солнце очень сильно. Так, например, можно говорить о том, что в атмосфере Солнца на миллион атомов водорода приходится лишь один атом кальция. При этом кальций – вовсе не самый малораспространенный на Солнце элемент, а линия К кальция, – одна из самых заметных в спектре Солнца. Это еще раз показывает удивительную чувствительность спектрального анализа – метода, который уже давно стал основным способом изучения небесных тел в астрофизике.
Помимо данных о химическом составе далекого космического источника излучения (в нашем случае Солнца), спектральные линии способны дать информацию и о других его физических свойствах.
Австрийский физик, профессор математики Христиан Доплер (1803–1853), работавший в Праге, в 1842 году опубликовал результаты своего замечательного исследования. Пусть какой-то источник издает звук с определенной частотой. Согласно эффекту Доплера , частота (тон) звука будет меняться, если источник звука будет двигаться – к нам или от нас! Если поезд на большой скорости проносится мимо станции, тон его свистка (или гудка) будет казаться наблюдателю, стоящему на перроне, выше, пока поезд приближается, и ниже, когда поезд, проехав мимо станции, начнет удаляться. Читатели, которые пользуются электричками, наверное, вспомнят, что неоднократно сталкивались с этим эффектом: тон звука свистка встречной электрички мгновенно меняется (становится ниже), как только ее головной вагон проносится мимо нас.
Существует легенда о том, что в 1845 году для проверки эффекта Доплера был проведен грандиозный эксперимент с движущимся паровозом, тянувшим за собой платформу с музыкантами. Оркестр играл на духовых инструментах. Вдоль пути следования размещались другие музыканты (люди с музыкальным слухом!), которые должны были сравнить звуки, доносящиеся с движущейся платформы, со звуками, которые издавали их собственные инструменты. Тон, несомненно, изменялся! Предсказания Доплера блестяще подтвердились.
Но какое отношение эти опыты имеют к Солнцу?
Дело в том, что французский физик Арман Ипполит Физо (1819–1896) убедительно показал, что эффект Доплера должен проявляться в изменении частоты не только звуковых колебаний, но и частоты любых типов волн, испускаемых неким источником! Это означало, что должна меняться и частота световых волн. Поскольку частота – это величина, обратная уже известной нам характеристике излучения, которая называется длиной волны, – вследствие действия эффекта Доплера длина волны солнечного излучения также должна изменяться в зависимости от того, к нам или от нас движется излучающее электромагнитные волны вещество Солнца.
На первый взгляд, обнаружить такое изменение невозможно. Ведь Солнце излучает, как было сказано выше, на всех длинах волн! И это значит, что если длина какой-то волны изменится, она превратится в длину другой волны, которая тоже испускается светилом, а в целом ничего не изменится – весь непрерывный спектр чуть сдвинется, но заметить это мы не сможем. Но дело в том, что на фоне непрерывного спектра Солнца есть особые метки – фраунгоферовы линии. Согласно расчетам Доплера, эти линии должны сместиться в сторону более коротких волн (к «синему» концу спектра), если источник движется к нам, и в сторону более длинных волн («красному» концу спектра), если источник излучения движется от нас. Эти смещения по сравнению с ситуацией, когда источник никуда не двигается, физики так и называют – синим или красным смещением.
Эти расчеты в принципе было нетрудно проверить. Солнце вращается довольно быстро. Это означает, что на восточном крае Солнца его вещество на экваторе движется к нам (с довольно приличной скоростью – около двух километров в секунду), а вещество на западном краю все время удаляется от нас с такой же скоростью, повинуясь вращению Солнца. Если мы получим спектр не всего Солнца, а только света, идущего от его восточного края, и сравним со спектром света, излучаемым западным краем, положения фраунгоферовых линий должны различаться: на востоке они должны сдвинуться в «синюю» сторону, на западе – в «красную».
Проблема заключалась только в том, что при известной (по видимому движению солнечных пятен) скорости вращения Солнца синее и красное смещение на краях должно было стать совсем незначительным. Линия с широким контуром могла сама оказаться гораздо шире ожидаемого смещения, и заметить такое смещение было бы сложно. Поэтому для контрольного эксперимента были отобраны слабые тонкие линии в оранжевой части спектра: две из них были солнечного происхождения, две – земного.
Читать дальше
Конец ознакомительного отрывка
Купить книгу