Цит. в предисловии редактора к кн.: Quasi-Stellar Sources and Gravitational Collapse: Proceedings of the First Texas Symposium on Relativistic Astrophysics , edited by I. Robinson, A. Schild, and E.L. Schucking (Chicago: University of Chicago Press, 1965).
Цит. в кн.: J. Pfeiffer, The Changing Universe (London: Victor Gollancz, 1956).
A. Alfven and N. Herlofson, “Cosmic Radiation and Radio Stars,” Physical Review 78 (1950): 616. Другие ранние статьи: G.R. Burbidge, “On Synchrotron Radiation from Messier 87,” Astrophysical Journal 124 (1956): 416–29; V.L. Ginzburg and I.S. Syrovatskii, “Synchrotron Radiation,” Annual Reviews of Astronomy and Astrophysics 3 (1965): 297–350.
Чтобы связать сильные радиоисточники с оптическими компонентами, пришлось преодолеть серьезные технические проблемы. Разные радиообзоры не всегда одинаково оценивают силу и даже существование конкретного источника. Угловые размеры радиоисточников разнятся от десятков угловых минут до нескольких угловых секунд, и то, что увидит интерферометр, зависит от количества элементов массива и дистанции между ними, а также от частоты, на которой ведется наблюдение. Кроме того, количество радиоисточников в любой области неба довольно быстро возрастает с уменьшением радиопотока. Это значит, что могут иметься множественные источники вблизи предела регистрации, «притворяющиеся» одним, более сильным. Это так называемый «предел путаницы» (confusion limit) исследования.
C. Hazard, M.B. Mackey, and A.J. Shimmins, “Investigation of the Radio Source 3C273 by the Method of Lunar Occultations,” Nature 197 (1963): 1037–39; M. Schmidt, “3C273: A Star-like Object with Large Redshift,” Nature 197 (1963): 1040; J.B. Oke, “Absolute Energy Distribution in the Optical Spectrum of 3C273,” Nature 1987 (1963): 1040–41; J.L. Greenstein and T.A. Matthews, “Redshift of the Unusual Radio Source: 3C48,” Nature 197 (1963): 1041–42. Современный обзор хронологии: C. Hazard, D. Jauncey, W.M. Goss, and D. Herald, “The Sequence of Events that led to the 1963 Publications in Nature of 3C273, the first Quasar and the first Extragalactic Radio Jet,” in Proceedings of IAU Symposium 313, edited by F. Massaro et al. (Dordrecht: Kluwer, 2014).
Интервью с Мартеном Шмидтом по поводу 50-й годовщины его открытия: http://www.space.com/20244-quasar-mystery-discoverer-interview.html.
В действительности и австралийский радиоастроном Джон Болтон, и американский астроном Алан Сэндидж имели в 1960 г. спектр 3С 48 – и оба упустили реальную возможность открыть первый квазар на три года раньше Шмидта.
Космологическое красное смещение является иным физическим явлением, чем доплеровское смещение. Доплеровское смещение возникает, когда волна распространяется в среде и источник волны движется относительно наблюдателя. Типичный пример – сирена, звук которой повышается, когда полицейская машина приближается, и понижается, когда машина удаляется. Космологическое красное смещение не требует среды, поскольку изменение длины волны вызывается расширением пространственно-временного континуума повсеместно во Вселенной.
Космология распространяет принцип Коперника, согласно которому мы не занимаем особого положения в Солнечной системе, на всю Вселенную. Это фундаментальное допущение современной космологии, до сих пор не опровергнутое ни одним наблюдением. Галактики возле Млечного Пути не выглядят сколько-нибудь отличающимися или иначе распределенными в сравнении с галактиками в дальних областях Вселенной (за исключением эволюционных эффектов).
Закон Хаббла: v = H0D , где v – скорость удаления, D – расстояние, а коэффициентом пропорциональности является постоянная Хаббла, или нынешняя скорость расширения Вселенной. Приблизительное значение малого красного смещения, выраженное в скорости удаления и скорости света, – z = v/c . Точная релятивистская формула: z = v(1 + v/c) / (1 – v/c) .
M. Schmidt, “Large Redshifts of Five Quasi-Stellar Sources,” Astrophysical Journal 141 (1965): 1295–1300.
F. Zwicky and M.A. Zwicky, Catalogue of Selected Compact Galaxies and of PostEruptive Galaxies (Guemligen, Switzerland: Zwicky, 1971). Статья, ставшая причиной спора: A. Sandage, “The Existence of a Major New Constituent of the Universe: The Quasi-Stellar Galaxies,” Astrophysical Journal 141 (1965): 1560–68. Случай описан в статье: K.I. Kellerman, “The Discovery of Quasars and its Aftermath” Journal of Astronomical History and Heritage 17 (2014): 267–82.
Следующий этап строительства гигантских телескопов отличался такой же яростной конкуренцией, что и текущий. Каждый из планируемых к постройке 20-метровых и бoльших телескопов оценивается минимум в миллиард долларов. Гигантский Магелланов Телескоп оказался в выгодном положении, поскольку пять из семи зеркал уже имелись в Аризонском университете, а выравнивание вершины горы и строительство началось в Чили. Проект Калтеха по созданию 30-метрового телескопа остановился из-за протестов гавайских активистов-аборигенов на Мауна Кеа, но теперь к нему вернулись. В Чили отправится и 39-метровый телескоп Европейской Южной обсерватории, и этот проект хорошо финансируется благодаря международному соглашению большинства европейских партнеров. Темной лошадкой в гонке является Китай, который может перепрыгнуть через класс 8–10 м и построить гигантский телескоп на Тибетском плато.
Читать дальше