Многие астрономы и физики еще несколько десятилетий назад пришли к выводу, что плотность Вселенной – по эстетическим соображениям – должна в точности равняться критической плотности. По мере расширения отношение плотности Вселенной к критической тоже меняется. Если оно меньше 100 %, то будет продолжать уменьшаться, а если больше – увеличиваться. Но, как мы знаем, сегодня, спустя миллиарды лет после Большого взрыва, плотность составляет не менее одной десятой от критического значения. Так может быть, только если в самом начале (скажем, в первые несколько секунд) плотность отличалась от критической на безумно малую величину. Трудно себе представить, как сегодня она может быть такой большой, если только не равна критической и, значит, всегда была ей равна.
Один из способов узнать, равна ли плотность Вселенной критической, – измерить, насколько быстро замедляется расширение. В принципе эти наблюдения можно свести к определению все той же постоянной Хаббла – точнее, зависимости скоростей галактик от расстояния (см. рис. 5). Но проблема здесь такая же, как и полвека назад: чтобы заметить эффект замедления, нужно учесть существование очень далеких галактик – настолько далеких, чтобы свет, принимаемый от них сегодня, был испущен в момент, когда Вселенная расширялась значительно быстрее. Но поскольку мы видим эти удаленные галактики в далеком прошлом, их истинные светимости могут сильно отличаться от измеренных по близким галактикам. Таким образом, по видимым светимостям далеких галактик ничего нельзя сказать о расстоянии до них. Однако, вероятно, физический размер галактик меняется значительно меньше, чем светимость. Поэтому измерение видимых угловых размеров может дать более надежную оценку расстояния. Подобные наблюдения были выполнены в 1992 г. Они показали, что темп расширения Вселенной замедляется примерно в той же степени, как если бы плотность равнялась критической.
Но если плотность Вселенной критическая, то вся ее масса не может пребывать в форме обычного вещества. Это противоречило бы расчетам процесса нуклеосинтеза в первые минуты после Большого взрыва и наблюдаемой распространенности легких элементов. Плотность Вселенной, вероятно, и не равна критической, но она заведомо больше плотности обычного вещества, предсказанной в моделях нуклеосинтеза. Так где же сосредоточена масса Вселенной? В 1970–1980-е гг. бытовало мнение, будто скрытая масса – это обычные нейтрино, которые на самом деле очень легкие, но не безмассовые. Как было показано в главе 4, нейтрино сейчас должно существовать примерно столько же, сколько фотонов. Поэтому легко посчитать, что нейтрино обеспечат критическую плотность, если их масса равна 20 электронвольтам (40 миллионным массы электрона). Но из недавних экспериментов по бета-распаду ядра следует, что масса нейтрино должна быть гораздо меньше, если вообще не равняться нулю.
Скрытую массу можно также набрать за счет каких-нибудь других частиц, более тяжелых, чем нейтрино с его 20 электронвольтами. Просто их будет меньше. Когда температура во Вселенной была высокой, свободно рождались все сорта частиц и античастиц. Однако как только Вселенная расширилась и охладилась, самые тяжелые из них должны были проаннигилировать со своими античастицами – за исключением одного «но». Их во Вселенной могло быть так мало, что они не нашли себе «партнера» для аннигиляции. Если же они были еще и стабильными, то должны были сохраниться до нашего времени. Зная массу частицы и темп ее аннигиляции с античастицами, можно вычислить, сколько их должно было остаться и какую часть массы в космосе они составляют. В последние годы в физике элементарных частиц обсуждается много подобных идей. Сегодня популярностью пользуется гипотеза, согласно которой скрытая масса состоит из стабильных частиц (известных как фотино или нейтралино) с массами от 10 до 10 000 масс протона и медленным темпом аннигиляции. В теории эти частицы возникают в результате особой симметрии, называемой суперсимметрией. Уже идут эксперименты, в которых предполагается зарегистрировать их в очень чувствительных детекторах по столкновениям с атомами. Кроме того, вполне может быть, что эти экзотические тяжелые частицы родятся на одном из мощных ускорителей нового поколения – таких как ССК или БАК. Если они будут открыты, это станет настоящей революцией в космологии и физике элементарных частиц.
Нельзя не упомянуть еще одного кандидата на роль скрытой массы – так называемый аксион, введенный в теорию в 1977 г. для разрешения некоторых проблем физики элементарных частиц. Со времен Большого взрыва должно было остаться огромное количество аксионов – значительно большее, чем число фотонов и нейтрино. Будь у аксионов масса всего в одну стотысячную электронвольта, на них можно было бы списать всю скрытую массу. Экспериментаторы уже планируют искать аксионы космического происхождения, однако пока ничто не указывает на то, что они вообще существуют.
Читать дальше