Модели Фридмана делятся на два класса. Если средняя плотность вещества меньше или равна определенному критическому значению, Вселенная будет пространственно бесконечной. В этом случае ее сегодняшнее расширение будет продолжаться вечно. Если же плотность больше критической, то создаваемое веществом гравитационное поле замкнет Вселенную саму на себя. Она будет конечной, но неограниченной – подобно сферической поверхности. (Другими словами, если мы отправимся в путешествие и будем идти все время прямо, то не встретим на своем пути какой-либо границы и вернемся туда, откуда пришли.) В таком случае гравитационные поля настолько сильны, что в конце концов останавливают расширение Вселенной и заставляют ее схлопнуться в состояние с неопределенно большой плотностью, из которого она вышла. При этом критическая плотность пропорциональна квадрату постоянной Хаббла. Взяв популярное сейчас значение 15 км/с на миллион световых лет, получим критическую плотность, равную 5×10 –30грамм на кубический сантиметр, или три водородных атома на тысячу литров космического пространства.
Перемещение любой типичной галактики во фридмановских моделях в точности повторяет движение брошенного вверх камня. Если его метнуть достаточно сильно или, что то же самое, если у Земли достаточно маленькая масса, камень будет постепенно замедляться, но в конце концов уйдет на бесконечность. Это соответствует случаю, когда плотность Вселенной меньше критической. Если же придать камню не очень большую скорость, то он, достигнув некоторой верхней точки, рухнет вниз. Это, разумеется, соответствует плотности Вселенной, большей, чем критическая.
Из этой аналогии, в общем-то, ясно, почему Эйнштейн не мог найти статическое решение своих уравнений: мы вполне привычны к зрелищу падающего или летящего вверх камня, но вот чтобы он надолго завис в воздухе… Эта аналогия, кстати, помогает рассеять и распространенное заблуждение по поводу расширения Вселенной. Галактики разбегаются не потому, что их растаскивает какая-то загадочная сила, – точно так же камень летит вверх не потому, что отталкивается Землей. Они удаляются друг от друга потому, что в прошлом их разметал некий взрыв.
По сути, с помощью этой аналогии можно подробно исследовать многие свойства фридмановских моделей, не прибегая к общей теории относительности, хотя в 1920-х гг. об этом еще не знали. Чтобы предсказать движение той или иной типичной галактики, нарисуйте сферу с наблюдателем в центре и радиусом, равным расстоянию от нас до этой галактики. Тогда последняя будет двигаться так, словно вся масса Вселенной сосредоточена в пределах этой сферы, а снаружи ничего нет. Посмотрим на это явление с другой стороны. Допустим, мы пробурили в земле скважину и бросаем туда различные тела. Тогда увидим, что измеряемое ускорение силы тяжести по направлению к центру земного шара будет определяться исключительно веществом, лежащим ниже нашей скважины (словно поверхность Земли проходит через ее дно). Это потрясающий результат можно сформулировать в виде теоремы, верной как в ньютоновской, так и в эйнштейновской теории гравитации. Ее единственное условие – сферическая симметрия исследуемой системы. Такую теорему в рамках общей теории относительности американский математик Дж. Д. Биркгоф доказал еще в 1923 г., однако значение этого для космологии было оценено лишь спустя десятилетия.
Так, лишь гораздо позже выяснилось, что с помощью теоремы Биркгофа можно рассчитать критическую плотность во фридмановских моделях (рис. 3). Если представить себе сферу с нами в центре и проходящую при этом через какую-нибудь далекую галактику, то, зная массу вещества внутри этой сферы, можно вычислить скорость убегания. (Скорость убегания – та, при которой галактика на поверхности сферы сможет уйти на бесконечность.) Она оказывается пропорциональна радиусу сферы: чем больше последний, тем больше массы в пределах сферы и тем большая скорость нужна для убегания на бесконечность. Однако в законе Хаббла говорится: действительная скорость галактики на поверхности этой сферы пропорциональна расстоянию до нас, т. е. тоже радиусу сферы. Таким образом, хотя скорость убегания и зависит от радиуса, из отношения скорости галактики к скорости убегания размер сферы выпадает. Причем это справедливо для всех галактик и не зависит от того, какую из них мы примем за центр сферы. Получается, значения постоянной Хаббла и плотности Вселенной определяют будущее всех галактик, движение которых подчиняется закону Хаббла. Если их скорости превосходят скорость убегания, галактики уходят на бесконечность. В противном случае в некоторый момент в будущем все они упадут на нас. Критическая плотность – это всего-навсего плотность, при которой скорость убегания сравнивается со скоростью, следующей из закона Хаббла. И зависеть она может только от постоянной Хаббла, квадрату которой пропорциональна (см. математическую заметку 2 на с. 234).
Читать дальше