Нельзя сказать, что вариант, при котором робот споткнется, был совершенно неожиданным. Его заранее рассматривали и разбирали со всех возможных сторон — и очень этого боялись. Как сказал Джон Беарс — специалист по робототехнике из Университета Карнеги — Меллона: «В худших своих кошмарах мы видели, как одна из ног погружается в землю и просто не выходит обратно» {2} . «Данте II» был разработан с прицелом на статическую стабильность : имея восемь ног, он должен был в любой момент держать более чем две из них на грунте, даже при ходьбе. Благодаря своей конструкции робот был способен автономно передвигаться по пересеченной местности, но ничто в управляющей им программе не позволяло ему вносить поправки в случае неожиданных соскальзываний и падений.
Дело было не в ограничениях конструкции «Данте II», которая на тот момент являлась суперсовременной. Робототехника с давних времен страдала от неспособности машин адаптироваться к сложным условиям среды. Какой-нибудь робот, с легкостью преодолевающий обстановку смоделированного офиса, где мебель имитируется простыми геометрическими фигурами, полностью теряется, оказавшись в сложной обстановке реального офиса.
Но время шло, и появлялись новые стратегии. Когда «Данте II» упал, специалисты по робототехнике как раз пробовали новый подход к конструированию машин; вдохновение в этом новом подходе они черпали из природы, ориентируясь на биологические системы. Эволюция давно уже решила многие из задач, которыми занимаются сегодня создатели роботов, поэтому естественно было обратиться за готовыми решениями к продуктам эволюции. Насекомое, к примеру, может иметь почти такую же форму, что и «Данте II», но при этом оно способно преодолевать чрезвычайно сложный рельеф и даже адаптироваться к потере одной или нескольких конечностей. И любому роботу, предназначенному для функционирования в опасной среде, придется научиться имитировать такое умение. Возникшее при этом новое поле исследований на стыке биологии и робототехники получило название биоробототехника , и падающая кошка стала важным объектом исследований в этой новой области. Оказалось, кстати говоря, что рефлексивное переворачивание кошки роботам необычайно сложно имитировать.
Биоробототехнику можно условно разделить на две подобласти — два поля исследований {3} . Первое — это робототехника, вдохновляемая биологическими идеями ; в ней биологические системы изучаются с целью создания новых роботов. Вторая — биоробототехническое моделирование , при котором роботизированные модели животных конструируются для того, чтобы лучше разобраться в биологии животных.
Обе эти стратегии существовали задолго до того, как в оборот было пущено слово робот , даже раньше, чем человеку удалось обуздать электричество и создать первые электрические машины. Автор первых фотографий падающей кошки Этьен-Жюль Марей, к примеру, делал механические модели системы кровообращения, летающих насекомых и птиц. Он использовал эти схемы , как он их называл, для того чтобы понять, как животные живут и двигаются.
По иронии судьбы первую механическую модель падающей кошки — хотя и очень грубую — изготовил в 1894 г. Марсель Депре, который поначалу яростнее всех возражал против кошачьих фотографий Марея. Согласившись в конечном итоге с точкой зрения Марея, Депре опубликовал статью, в которой описал свое устройство {4} .
Плоский диск свободно подвешен на веревке и висит горизонтально. В поверхности диска вырезаны две кольцевые выемки, в каждой из которых находятся пружинка и металлический шарик, который она может толкнуть. Обе пружинки сжаты и сдерживаются нитями. Когда нити пережигают и тем самым освобождают пружинки, оба шарика запускаются по выемкам, проходят полный круг и оказываются в итоге в том же месте, откуда стартовали. Шарики движутся в одном направлении, и по закону сохранения момента импульса весь диск должен повернуться на какой-то угол в противоположном направлении. Однако поворота диска на полные 360º не произойдет, потому что он намного тяжелее шариков. В результате система окажется в том же внутреннем состоянии, с какого начинала, — мы пренебрежем небольшим изменением, связанным со сжатием пружин, — но повернутой на некоторый конечный угол. В эксперименте Депре устройство повернулось на 40º. Эта система, утверждал он, аналогична кошке, поскольку кошка тоже использует внутреннее движение, чтобы в конечном итоге развернуться в противоположную сторону, несмотря на то что в конце ее тело имеет ту же форму, что и в начале.
Читать дальше
Конец ознакомительного отрывка
Купить книгу