В нашем случае закон сохранения четности запрещает испускание, как говорят физики, «продольно поляризованных» нейтрино, т. е. нейтрино, имеющих, скажем, преимущественно левое вращение по отношению к направлению движения.
Кроме того, до 1957 г. думали, что имеет место и другая симметрия — зарядовая, благодаря которой любое физическое явление остается «инвариантным» (т. е. описывается одним и тем же математическим законом), если каждую частицу заменить ее античастицей. Такая симметрия не позволяет нейтрино иметь только левое вращение, а антинейтрино — только правое.
Однако в 1957 г. китайские физики, работающие в США, — Ли Дзундао и Янг Чженьнин — выдвинули гипотезу, что при слабых взаимодействиях эти два закона симметрии не имеют места. В многочисленных экспериментах обнаружились явления, в которых эти законы явно нарушаются, но обязательно оба сразу.
Советский физик, лауреат Ленинской и Нобелевской премий Лев Давидович Ландау показал, что в природе существует более глубокая симметрия, которую он назвал комбинированной инверсией. Предложенный им новый закон утверждает, что любое явление остается инвариантным, если одновременно «правое заменить на левое», а каждую частицу заменить ее античастицей.
С точки зрения нового закона нейтринный пучок «имеет право» быть полностью поляризованным. Кроме того, если нейтрино вращается справа налево, то антинейтрино должно вращаться слева направо по отношению к направлению своего движения. Такая возможность и предусматривается теорией «продольного нейтрино» А. Салама, Л. Ландау, Ли и Янга, согласно которой эти частицы должны быть полностью поляризованы. Вместе с тем, по этой теории, нейтрино обязаны иметь массу, строго равную нулю, а значит, в соответствии с теорией относительности, скорость их всегда равна скорости света.
Все эти предсказания теории ныне подтверждаются в опытах. Доказано, что нейтрино вращается справа налево (если смотреть по ходу его движения). Известно, что степень поляризации нейтрино и антинейтрино очень высока. Правда, не доказано еще экспериментально, полностью ли поляризованы неуловимые частицы, как этого требует теория продольного нейтрино, и точно ли равна нулю их масса.
IV Международная школа по нейтронной физике, июнь 1982 г. Б. Понтекорво и профессор С. Раман (США)
Таким образом, мы может заключить, что нейтрино и антинейтрино отличаются друг от друга тем, что имеют разное направление «спиральности», причем нейтрино напоминает винт с левой резьбой, а антинейтрино — с правой. Но здесь возникает естественный вопрос: сведется ли к этому сущность нейтринного заряда? Иными словами, является ли разное направление «спиральности» нейтрино и антинейтрино единственным различием между этими частицами?
Всего несколько месяцев назад большинство физиков, я думаю, дали бы положительный ответ на этот вопрос. Однако недавно законченный важный опыт, о котором речь будет идти ниже, показывает, что вопрос о природе нейтринного заряда не такой простой.
То, о чем говорилось до сих пор, — это прошлое физики нейтрино. Сейчас я расскажу о задачах физики нейтрино, которые еще не решены или решаются в настоящее время.
Исследования нейтрино бурно развиваются, особенно в связи с созданием советскими и зарубежными физиками новой области физики элементарных частиц — физики нейтрино высоких энергий.
Нейтрино, испускаемые радиоактивными ядрами урановых реакторов, имеют энергию, по порядку величины равную характерной ядерной энергии, т. е. несколько миллионов электронвольт. Эта энергия в миллион раз превышает энергию электронов в атоме, но сегодня, когда имеются машины, ускоряющие частицы до десятков миллиардов электронвольт, реакторы рассматриваются как источники нейтрино низкой энергии.
Для физики нейтрино высоких энергий характерно то, что в этой области науки исследуются главным образом нейтрино «пионной природы», т. е. нейтрино, рождающиеся при распаде пиона.
Как можно получить пучок нейтрино пионной природы?
Представьте себе современный ускоритель, дающий протоны с энергией в десятки миллиардов электронвольт (такой, как дубненский синхрофазотрон Объединенного института ядерных исследований или американский брукхейвенский ускоритель). Когда протоны попадают на мишень (скажем, алюминиевую пластинку толщиной в несколько сантиметров), рождаются пионы. Эти пионы распадаются на лету (средний путь их до распада в вакууме измеряется десятками метров). При этом образуется нейтрино согласно схеме
Читать дальше
Конец ознакомительного отрывка
Купить книгу